

Paulina Troncoso Roberto Maiolino Fillipo Mannuci Giovanni Cresci Alessio Gnerucci

Multiwavelength Views of the ISM in High-Redshift Galaxies, ESO, 27-30 June 2011

Outline

AMAZE+LSD:

IFU Metallicity, Gas dynamics and SED fitting (UV-to Spitzer-MIPS bands).

II Evolution of the mass-metallicity relation.

III Evolution (deviations) respect to the FMR, What happens beyond z~2.5?

IV Galactic gradients at z~3.5, inverted respect to local galaxies.

V Gas content, galaxy sizes and derived quantities.

VI Summary.

AMAZE Assessing the Mass-Abundance redshift[Z] Evolution

LSD Lyman-break galaxies Stellar populations and Dynamics

Multiwavelength Views of the ISM in High-Redshift Galaxies

COMPOSITE SPECTRUM

Mass-Metallicity relation

AMAZE- FMR comparison

Squares: Data at z~3.5. Troncoso et al. 2011 in prep. Lines: Fit observations FMR at z<2.5, Mannucci et al. 2010.

There is no correlation between the dynamical state of these galaxies and the differences respect to the FMR.

Enhanced merging at z>3.3 cannot be the only reason for the deviations from the FMR at z>3.

AMAZE @ z~3

CDFa-c9 z = 3.219

SSA22a-C16

z = 3.065

Metallicity gradients @ z~3

Gas content SK law at high-z ?

$$\Sigma$$
 SFR ~ (Σ_{GAS})ⁿ

$$M_{gas}(M_{\odot}) = 757 \times 10^6 \left(\frac{\text{SFR}}{\text{M}_{\odot}/\text{yr}}\right)^{0.71} \left(\frac{r}{\text{kpc}}\right)^{0.58}$$

Galaxy size

➤2 methods: SB & Moffat.

Images: OIII seeing limited,OIII AO & continuum HST.

Y_{eff}=metals produced and retained in the ISM.

Pure outflows, f_i=0, f_o=6 Outflows + Inflows, f_i=2.5, f_o=1

<u>Model:</u> Erb 2006

Stars: Erb 2008 z~2.2. Circles: Mannucci+09 at z~3.5.

Massive galaxies at z~3.5 experience pronounced smooth infall of pristine gas fi=2.5*fo.

Multiwavelength Views of the ISM in High-Redshift Galaxies

<u>Summary</u>

- Multi wavelength observations of star forming galaxies at z~3.3 suggest a change on the mode of star formation from z<2.5 up to z~3.3.
- II Dynamical studies: These differences are equal for rotating and not rotating. Therefore, enhanced merging at z>3.4 cannot be the only reason for the deviations from the FMR at z>3.
- III Inverted galactic gradients supports the cold flows scenario.
- III HST images, JWST and ALMA follow-up are required to sample the early stages of galaxy evolution.

Study the chemio-dynamical evolution of star forming galaxies through the cosmic epochs.

- •Derive metallicities from SINFONI NIR IFS data on star forming- galaxies at z~3.3.
- Connect with the information inferred from gas dynamics and galaxy SED.
- Compare with data at lower redshift in order to study the evolution.

AMAZE II. Chemical evolution constraint at redshift 3.3. Troncoso et al. 2011b in preparation.

• Metallicity gradients, relative role of various processes: inflows, outflows, star formation.

AMAZE III. Metallicity gradients, gas fraction at z ~ 3.3. Troncoso et al. 2011a in preparation.

- Constrains models of galaxy formation & evolution with these observations. Troncoso et al. 2012?
- •JWST-NIRSpec data simulation.

ELIXIR consortium 2012?