

- Spatially resolved PDR, XDR and HII diagnostics
- ISM properties as function of environment
- "calibration" of toolbox for use at high z

- global ISM properties and their evolution with redshift (PDR / XDR / HII modelling)
- different modes of star/galaxy formation (line deficits)
- feedback from star formation and AGN (outflows) on galaxy evolution / stimulation and quenching
- Local calibration of toolbox
- > Application to z~2
 - Mid-IR diagnostics at z~3-4

Multiwavelength Views of the ISM in High-Redshift Galaxies

most important cooling lines of the atomic gas. 158 μm Probe the conditions in PDRs, i.e. the warm neutral [0] 63 μm gas cloud surfaces which constitute a large fraction 145 μm of the neutral medium in a galaxy. [NII] conditions in the ionized medium. Important diagnostics 122 μm of absolute level and excitation of star forming (and AGN) 204 μm [NIII] activity and of n_{e} @ low density (< 10³ cm⁻³) 57 μm 53 (z>0.1) [OIII] μm 88 μm

I) Spectral features

- SEDs (and broad ice and solid state features)
- Fine structure lines ([OIII], [NII], [NIII], [OI], [CII])
- Molecules (OH, H₂O, CO, NH₃...)

II) Modeling

- HII region/photoionization diagnostics
- PDR and XDR modeling
- molecular radiative transfer modeling

Multiwavelength Views of the ISM in High-Redshift Galaxies

lvison+ (priv. comm., SPIRE FTS)

Ivison+ 2010 (SPIRE FTS)

Valtchanov+ 2011 (SPIRE FTS)

Multiwavelength Views of the ISM in High-Redshift Galaxies

ISO's Heritage – The "CII deficit"

Multiwavelength Views of the ISM in High-Redshift Galaxies

Line - deficiency

- HII galaxy
- LINER
- Seyfert & QSO
- Blue Compact Dwarf
- Unclassified
- High-z galaxy

The roles of Major Mergers vs. Steady Accretion, and the SFE

Major mergers

Kauffmann et al. 1993, Steinmetz & Navarro 2003, Hernquist, Springel, di Matteo, Hopkins et al. 2003-2006, Robertson & Bullock 2008

Minor mergers and steady accretion:

Dekel & Birnboim 2003,2006, Keres et al. 2005, Nagamine et al. 2005, Davé 2007, Kitzbichler & White 2007, Naab et al. 2007, Governato et al. 2008, Ocvirk et al. 2008, Dekel et al. 2009, Agertz et al. 2009

[Graciá-Carpio et al. in preparation]

PACS Spectroscopy: $z \approx 1$

Name	z	Туре	LFIR
MIPS J1428	1.33	SB	2.8
Abell 0370_01	0.72	Arc/SB	0.9
SMM J02399	1.06	Sey/LoBAL	1.8
SDSSJ1722	0.74	Sey2	1.3
ELAISCJ1640	1.10	QSO	2.6

- [O I]63μm, [O III]52, 88 μm
- Comparative to low z sample, spanning AGN, starbursts, low-Z, ULIRGs...

[0111]52/[0111]88

Good density diagnostic for HII regions with n_H⁺ > 10² cm⁻³

Abel et al. 05

MIPS J142824.0+352619

Borys et al. 06

Swinbank et al. 06

•A hyperluminous "Monster": Extreme Starburst at z=1.325 selected from Bootes (Borys et al. 06, Desai et al. 06)

no AGN signatures

Lensed by foreground z≈1 elliptical µ<8 (Borys+ '06) & confirmed by CO
L(FIR)=2.8 ± 0.7×10¹³Lsol (lensed)

•Bright CO (3-2) & CO (2-1) detections (NRO, Iono+ '06b) M(H2) $_{\sim}$ 10¹¹ M $_{\odot}$,

MIPS J142824.0+352619

[O I] 63 µm

[O III] 52 μm

Sturm+ 2010

MIPSJ1428 10⁻² (a) O MIPS J1428 The Luminosity of a ULIRG M82 [O I] (63.19µm) / FIR but C 068 The SFE of a normal starburst 10⁻³ 0 Mrk 231 0 10^{-4} 10² 10³ 10¹ L_{FIR} / M_{gas} [L_{\odot} / M_{\odot}] Sturm+ 2010

Hailey-Dunsheath + 2010 (ZEUS/CSO)

PDR diagnostic diagram

FLSJ172228.04+601526.0 Sy2, z=0,74

SMM J02396-0134 Sy/LoBAL, z=1.06

FWHM (CO) = 780 km/s (Greve + 2005)

PACS Spectroscopy: $z \approx 2 - 4$

Name	z	Туре	L _{IR} 10 ¹⁴ L⊚
IRAS F10214+4724	2.29	Sy2	5.1
SMM J14011+0252	2.57	SMG	1.1
Cloverleaf	2.57	QSO	8.1
APM 08279+5255	3.91	QSO	3.4

GTKP: The Dusty Young Universe, PI K. Meisenheimer

4 bright, lensed QSOs and SMGs

Redshifted [S III] 33.5 and [O IV] 25.9 ([S III]used as a proxy for [Ne II]) SIII (IP=23eV) traces low excitation gas, OIV(IP=55eV) traces high excitation gas \rightarrow Starburst/AGN diagnostic

 $2x10^{-18}$ W/m² , 1.2 hrs

Multiwavelength Views of the ISM in High-Redshift Galaxies

HII galaxy
LINER
Sy2
Sy1

Multiwavelength Views of the ISM in High-Redshift Galaxies

E. Sturm

IRAS F10214+4724

IRAS F10214+4724

E. Sturm

IRAS F10214+4724

E. Sturm

52.0

Multiwavelength Views of the ISM in High-Redshift Galaxies

10⁻¹ [C II] 158µm [O I] 145µm [N II] 122µm [O III] 88µm FIR FIR FIR FIR 0 0 10⁻² 1 ∞ 0 ∞ 10⁻³ 10⁻⁴ Line flux / FIR 10⁻⁵ 0 10⁻¹ 0 [O III] 52µm [O I] 63µm [N III] 57µm 0 0 0 FIR FIR FIR 0 0 HII galaxy 10⁻² 0 0 0 LINER 0 Seyfert & QSO 10^{-3} Blue Compact Dwarf Unclassified 10⁻⁴ High-z galaxy 10⁻⁵ 10² 10³ 10⁰ 10⁰ 10⁰ 10² 10⁰ 10¹ 10¹ 10^{2} 10^{3} 10¹ 10^{2} 10³ 10^{1} 10^{3} L_{FIR} / M_{H_2} [L_{Sun} / M_{Sun}]

June 29, 2011

A PACS Redshift 1-2 Oxygen Survey: Leveraging the ZEUS [CII] Detections	Probing the Interstellar Medium of ULIRGs/SMGs at high redshift
Proposal ID: OT1_gstacey_3	Proposal ID: OT1_AVERMA_2
Principal Investigator: Gordon Stacey	Principal Investigator: Aprajita Verma
Time: 45.7 hours priority 1	Time: 77.3 hours priority 1
Characterising the ISM of bright, lensed star-forming galaxies across Proposal ID: OT1_rivison_1 Principal Investigator: Rob Ivison Time: 94.1 hours priority 1 A Herschel Survey of [OI]63um in 1 <z<2 submilling<="" th=""><th>A cosmic time with the SPIRE FTS Herschel OT1 high-z spectroscopy projects</th></z<2>	A cosmic time with the SPIRE FTS Herschel OT1 high-z spectroscopy projects
Proposal ID: OT1_kcoppin_1	Measuring the PAH emission in a z=6.1 star forming Submillimetre Galaxy
Principal Investigator: Kristen Coppin	Proposal ID: OT1_schapman_1
Time: 26.3 hours priority 1	Principal Investigator: Scott Chapman
SPIRE Spectroscopy of the Brightest High-Redshift Submillimeter Galaxies	Time: 4.8 hours priority 1
Proposal ID: OT1_dmarrone_1 Principal Investigator: Daniel Marrone Time: 4.1 hours priority 1	Spectroscopy of a Highly Magnified Galaxy Behind the Bullet Cluster Proposal ID: OT1_agonza02_1 Principal Investigator: Anthony Gonzalez Time: 12.8 hours priority 1
Characterizing the Interstellar Medium in 'Normal' High Redshift Galaxies	Resolved Herschel photometry and line spectroscopy for the brightest lensed galaxy at z~2
Proposal ID: OT1_driecher_1	Proposal ID: OT1_jrigby_1
Principal Investigator: Dominik Riechers	Principal Investigator: Jane Rigby
Time: 24 hours priority 2	Time: 19.2 hours priority 1

High J CO - the new toy

Extragalactic High-J CO

High-J CO --> A new probe of warm and dense molecular gas

- SB and AGN feedback
 - UV/X-ray (AGN torus)
 - Cosmic rays
 - Outflows, jets
- Mergers, galactic dynamics
- Methods
 - Galactic templates
 - Non-LTE radiative transfer
 - PDR/XDR/shock models
- Literature Data
 - M82 and Mrk 231 (SPIRE-FTS)
- SHINING PACS observations of nearby IR-bright galaxies
 - Full range scans of 5 templates (NGC 1068)
 - 1 2 high-J CO lines in ~10 starbursts, ~20 Seyferts, ~20 ULIRGs

M82 (Panuzzo+10)

CO(6-5) and CO(7-6) brighter than PDR predictions ⇒ not tracing UV-heated gas

- T ~ 545 K consistent with $H_2 S(0)/S(1)$ ratio --> L/M ~ 2.6 L_{sun}/M_{sun}
- Cosmic ray density too low

1200

1400

1600

CO(11-10)

(6-0

Wavelength [um]

1000

Frequency [GHz]

Active Galaxy M82

700 600 500

700

600

500

200

100

400

[<u>k</u>] 400 300 400

43.4" beam

~ 830 pc

CO(6-5) - 13CO(7+ - CO(7-6)

800

600

Dissipation of turbulence

⇒ stellar wind and supernovae

Multiwavelength Views of the ISM in High-Redshift Galaxies

Mrk 231 (van der Werf+10 – HerCULES)

Mrk 231 (van der Werf+10 – HerCULES)

NGC 1068

NGC1068 central spaxel

Multiwavelength Views of the ISM in High-Redshift Galaxies

NGC 1068 – Molecular Gas

- SHINING PI E. Sturm
- PACS spectroscopy of nearby IR bright galaxies

- x10 CO lines --> First extragalactic far-IR CO
- Atomic fine-structure lines ([CII], [OI], [NII], [OIII], [NIII])
- OH, H₂O, OH⁺, H₂O⁺, ...
- Molecular emission concentrated in central spaxel

CO(18-17)

CO Line SED – LVG Modeling

Multiwavelength Views of the ISM in High-Redshift Galaxies

June 29, 2011

XDR Modeling

XDR vs Shock Chemistry

Reproduce the CO SED with 2 shocks: n ~ 10⁵ – 10⁶ cm⁻³, v ~ 20 – 30 km/s

- OH, H₂O, OH⁺, H₂O⁺ at v_{sys}
 - X(OH) ~ 2 x 10⁻⁶
 - $X(OH^{+}) > 5 \times 10^{-9}$
 - $X(H_2O^+) > 10^{-9}$
- Shocks
 - All oxygen goes to H_2O Need H_2O + hv --> OH + H to produce OH
 - Need H⁺ to produce OH⁺, H₂O⁺ through ion-molecule reactions--> X-rays
- XDRs generate high columns of OH, OH⁺, H₂O⁺ --> prefer XDR for ME
- For HE, ancillary lines are much weaker --> no constraint

Hailey-Dunsheath+ in prep.

Shocks vs. XDR ?

Abel+ 2009

Fig. 2. a) (Upper panel) The SiO integrated intensity map (contour levels are 3σ to 12σ in steps of 1σ =0.082 Jy km s⁻¹ beam⁻¹) is overlaid on the CO(1–0) integrated intensity map of S00 (color scale as shown in units of Jy km s⁻¹ beam⁻¹). b) (Middle panel) The same as a) but showing a zoomed view on the inner 12" around the AGN (identified by the cross). c) (Lower panel) The SiO map contours are overlaid on the 3 mm continuum map (color scale) of Fig. 1. The SiO beam is shown in all the panels by an ellipse.

Fig. 3. The CN integrated intensity map. Contour levels are 3σ , 4σ , 6σ , 9σ , 13σ to 25σ in steps of 6σ , with 1σ =0.40 Jy km s⁻¹ beam⁻¹. The AGN is identified by the cross and the CN beam is shown by an ellipse.

Garcia-Burillo + 2010 SiO and CN → XDR rather than shock

Fig. 12. a) (*Left panel*) The Chandra X-ray image of NGC 1068 (contours:15, 30, 50, 100, 200, 400, 600, 1000, 2000 and 3000 counts) obtained in the 0.25-7.5 keV band by Young et al. (2001) is overlaid on the PdBI SiO map (color scale in units of Jy km s⁻¹ beam⁻¹). b) (*Middle panel*) The X-ray image obtained in the 6–8 keV band by Ogle et al. (2003) (contours: 0.2, 0.5, 1, 2, 4, 8, 15, 25, 40, 80 and 100 counts) is overlaid on the SiO(2–1)/CO(1–0) brightness temperature ratio (color scale) at the SiO spatial resolution. c) (*Right panel*) Same as b) but with the X-ray image obtained in the 6–8 keV band overlaid on the CN(2–1)/CO(1–0) ratio (color scale) at the CO spatial resolution. Ellipses show beams of SiO and CO as in Fig. 9.

Starburst- and AGN-Driven Outflows

Feedback from the **Starburst**

- Mass-metallicity relation of galactic bulges
- galaxy luminosity functions
- enrichment of IGM and ICM

Feedback from the **AGN**

Hopkins+2006

- merger \rightarrow ULIRG \rightarrow QSO \rightarrow elliptical
- quenching of star formation
- BH-spheroid mass relation
- blue cloud vs. red sequence

Tracing Molecular Outflows

Outflows almost exclusively studied in ionized/ atomic tracers

What about molecular gas?

OH molecule

Ground state far-IR transitions (79 μm, 119 μm) plus higher enegy level tansitions (e.g. 65 μm)

Herschel/PACS

- Excellent far-IR sensitivity
- ~100 km/s resolution
- wavelength coverage: $55 200 \,\mu m$

Mrk 231

$\label{eq:LIR} L_{\rm IR} = 3.2\,\times\,10^{12}~L_{_{\odot}}\,(70\%~\text{AGN})$ Type 1 LoBAL AGN

P-Cygni profile with blueshifted absorption and red-shifted emission

∆v ~ 1,170 km/s

Fischer + 2010

edshift Galaxies

Are the strong outflows driven by the AGN rather than by the star formation in these objects?

SNe driven \rightarrow v(outflow) < 500 km/s (e.g. Martin 2005, Thacker+ 2006)

Multiwavelength Views of the ISM in High-Redshift Galaxies

E. Sturm

Does the outflow carry sufficient molecular gas to remove the star formation fuel and actually quench the star formation?

June 29, 2011

Sturm+ 2011

These ULIRG winds will totally expel the cold gas reservoir in the nuclei in about $10^6 - 10^8$ yrs, therefore halting the star-formation activity on the same timescale.

Sturm+ 2011

Outflows almost exclusively studied in ionized/atomic tracers

Few molecular studies, e.g. Sakamoto+ 2009 (Arp220):

HCO⁺ shows ~100 km/s P Cygni profiles in both nuclei

(Mid- and) far-infrared spectroscopic diagnostics of local and distant IRBGs

- 1) Calibration of FIR toolbox
 - quantification of AGN contribution: better done at (rest) mid-IR
 - global Line/FIR deficiency at high L_{FIR}/M_{mol tracing} different modes of star formation (major merger vs. steady accretion)
- 2) FIR diagnostics at high z
 - first time PDR/HII diagnostics at high redshifts
- 3) New FIR diagnostics
 - high-J CO Lines in Starbursts and AGNs PDR vs. XDR (shocks, CR,...)
 - OH as tracer of outflows (and inflows) and negative AGN feedback

Backup slides

XDR Modeling – where's the torus?

- Krolik+Lepp 89 FIR CO lines from the Torus
 - Molecular gas ~ 1 pc from $L_x \sim 10^{44}$ erg/s source

⇒ Measured limit is 2.5 times weaker than predicted (modulo geometry, intrinsic luminosity ...)

Mass and Energetics – Model

outflow mass of 5.8 x 10⁸ M_{\odot} outflow rate of ~700 M_{\odot}/yr
Mrk 231 – Na I D Outflow

