Enhanced [CII] emission in the highest redshift galaxies: low metallicity?

Collaborators

Roberto Maiolino Paola Caselli Tohru Nagao Steve Hailey-Dunsheath Kristen Coppin Jeff Wagg **Bob Fosbury**

High redshift [CII] lines

- The higher the redshift, the better the atmospheric transparency, with notable gaps.
- Early attempts unsuccessful.
- First detection a z=6.4 with IRAM 30m in QSO SDSS1148+5251.

High redshift [CII] lines

- ZEUS @ CSO has shown that [CII] is quite ubiquitous with 12/13 sources detected at 1<z<2 (see Gordon Stacey's talk).
- Two detections with SMA (Iono et al 2006) and Herschel (Ivison et al 2010).
- Four z>4 detections with APEX.

Monday, September 12, 2011

APEX last week

Today's PWV forecast for Chajnantor

BRI0952-0115 (z=4.43)

- 1st APEX/SHFI detection of broad extragalactic line.
- Confirmed with SMA and IRAM PdBI, see Simona Gallerani's talk.
- Lensing amplification μ = 2.5 to 8.
- Brighter than expected compared to local ULIRGS. Frequency [GHz] 350.0 349.4 349.6 349.8 350.2 200 -2.5log L_(cu)/L_{rus} 100 T^{*} [mK] 2 -3.5 0 ۰, 119220 [* ap.[CII] <10kpc $^{-2}$ LIRGs z<0.1 -10010 12 14 -2000 200 -400400 log L_{FIR} (L_o) Velocity [km/s]

Maiolino et al. 2008

BRI1335-0417 (z=4.41)

- Unlensed quasar with LFIR=3x10¹³L_{Sun}.
- Most luminous [CII] line to date with L_[CII]=1.6×10¹⁰L_{Sun}
- Gas rich merger with SFR of a few 1000 M_{Sun}/yr ?

Wagg et al. 2010

Non-detections

- Cosmic Eye at z=2.8 observed with FLASH.
- GDSn4em at z=5.553 (candidate pop III galaxy).
- Both deep integrations (~30h total time) push the APEX instruments to (or beyond) their limits.

Monday, September 12, 2011

LESS J033229.4-275619 (z=4.76)

- Discovered from LABOCA ECDFS Submm Survey.
- One of the highest redshift SMGs known.
- Hosts a Compton-thick AGN, contributing <30% of far-IR luminosity.

LESS J033229 in [CII]/FIR vs. CO/FIR

• $L_{[CII]}/L_{CO(1-0)} \approx 10^4$ factor 2-3 higher than other sources.

- Uncertainty dominated by LFIR, but parallel to models.
- Near boundary of PDR models, close to low Z objects.

Low metallicity & spherical PDR models

- L_[CII]/L_{CO(1-0)}=10000 to 70000 commonly found in low metallicity galaxies.
- Cannot be explained with solar metallicity plane-parallel slab PDR models => requires spherical PDR models.

E.g. Bolatto et al. 1999, Röllig et al. 2006, ...

Enhanced [CII] in LESS J033229

- Reduced dust abundance ⇒ less dust shielding allows
 FUV photons to penetrate deeper ⇒ decreases L_{FIR} and
 CO core sizes & increase [CII] emitting regions as
 photons travel a larger volume of clouds.
 [CII] region may also contain self-shielded H₂ ⇒ boost
 - H_2 to CO conversion factor X_{CO} by up to 100 times.
- Very high redshift may imply lower metallicity.

What is the best ISM mass tracer?

- $M(H_2)$ derived from CO = 1.6×10¹⁰ Msun.
- Atomic mass derived from [CII]=1.0×10¹⁰ M_{sun}.
- ⇒ CO may be missing a significant fraction of the ISM!

Conclusion: [CII] will not only be brighter in low metallicity environments, but it also provides a more reliable mass tracer. This is particularly important when observing z>4 galaxies.