

MeerKAT Absorption Line Survey Evolution of cold gas in galaxies

Neeraj Gupta

Chile - 2011

AST(RON

Evolution of the Star formation rate density

SFRD is directly related to the amount and physical properties of cold gas in galaxies.

Bouwens et al. 2010

AST(RON

Star formation intimately related to Cold gas

- ♦ Cold gas a precursor for star formation.
- ✦ SF influences physical conditions in and around galaxies: through radiative, chemical and mechanical feedbacks.
- Little known about the cosmic evolution of Cold gas
 - ♦ 21-cm HI emission studies limited to z<0.2.</p>
 - ★ z >0.1 molecular emission line studies mostly limited to massive galaxies and AGNs.

..... will of course change with ALMA

Absorption lines as probe of cold gas

 $I = I_o e^{-\tau}$

- Luminosity unbiased
- Probes physics at small scales

 $v = v_o/(1+z_{gal})$ -> Intervening absorption

Complementary to emission line studies

Chile - 2011

AST(RON

AST(RON

AST(RON

21-cm absorption as the tracer of cold gas in galaxies

$$N(\text{H I}) = 1.835 \times 10^{18} \frac{T_{\text{s}}}{f_{\text{c}}} \int \tau(v) \, \mathrm{d}v \, \mathrm{cm}^{-2}$$

λ_o=21-cm (1420.405752 MHz)

But 21-cm absorbers are very rare. About a dozen known in pre-SDSS era.

AST(RON

Need systematic surveys of 21cm absorption

- 1) 21cm absorbers are rare and blind searches not possible.
- 2) Need to preselect the sight lines: indicators of high HI column density.
- 3) Possible with the following all sky surveys:

Sloan Digital Sky Survey (SDSS): deep optical multicolor images and spectroscopy over 8000 square degrees covering more than 930,000 galaxies and more than 120,000 quasars.

The NRAO VLA Sky Survey (NVSS): Entire sky north of -40 degrees declination with an rms of 0.45 mJy/beam (45 "). Faint Images of the Radio Sky at Twenty-cm (FIRST): 9900 square degrees with rms of 0.15 mJy/beam, and a resolution of 5".

with Srianand, Petitjean, Noterdaeme and Ledoux.

AST(RON

AST(RON

AST(RON

AST(RON

Our systematic surveys of 21cm absorption

Observed 60 sight lines at 0<z<3.5 based on preselection methods.
 Using ~800 hrs of GBT, GMRT and WSRT.

Detected 15 new 21cm absorbers ! Doubles the number of absorbers known in the pre-SDSS era.

Image credits: www.gb.nrao.edu, www.ncra.tifr.res.in, www.astron.nl

GMRT survey based on MgII systems

- 1) SDSS DR7: Automatic procedure to detect systems with W(MgII)>1Å.
- 2) Selected systems with 1.10<z<1.45: ~3000 MgII systems.
- 3) Cross-correlate with NVSS and FIRST: brighter than 50mJy.
- 4) GMRT observations ~400 hrs: 35 systems observed.
- 5) Nine new detections.

Equivalent width (measure of the strength of spectral line)

W_{obs} =
$$\int \frac{I_{\rm c} - I}{I_{\rm c}} d\lambda = \int (1 - e^{-\tau(\lambda)}) d\lambda$$

Team: R. Srianand (PI), N. Gupta. P. Petitjean, P. Noterdaeme & D.J. Saikia.

Results published as: Gupta et al. 2009, MNRAS, 398, 201; Srianand et al. 2008, MNRAS, 391, L69; Gupta et al. 2007, ApJL, 654, 111.

AST(RON

Number density of 21-cm absorbers

Estimating $n_{21}(z)$:

 $n_{21}(T_{21} \ge T_0, W_r \ge W_o, z) = C \times n_{\text{MgII}}(W_r \ge W_o, z)$

Number per unit range of 21-cm absorbers for integrated 21-cm optical depth > 0.3 km/s and $W_0 = 1$ Å.

Is the CNM fraction of W>1Å smaller at higher redshifts ? Blind searches are ideal for this purpose.

Constraints on constants using radio absorption lines

- HI 21cm vs UV
- HI 21cm vs Molecular

$$x = rac{lpha^2 g_p}{\mu}; rac{\Delta x}{x} = rac{z_{UV} - z_{21}}{1 + z_{21}} = \left(\begin{array}{c} 0.63 \pm 0.99
ight) imes 10^{-5} & {
m Tzanavaris \, et \, al. \, (2007)} \\ = (6.8 \pm 1.0) imes 10^{-6} & {
m Kanekar \, et \, al. \, (2010)} \end{array}$$

 $y=g_plpha^2; rac{\Delta y}{y}=rac{z_{mol}-z_{21}}{1+z_{mol}}$ = (-0.18 ± 0.50) × 10⁻⁵

OH 18cm vs HI 21cm

$$F = g_p (\alpha^2 \mu)^{1.57}$$

• OH 18cm satellite

Ammonia

$$G = g_p (\alpha^2 \mu)^{1.85} = (-1.18 \pm 0.46) \times 10^{-5}$$
 PKS1413+135 at z=0.2467
(Kanekar et al. 2010).
Also Darling (2004) and 10134-0931 at z=0.765.

$$\frac{\Delta \mu}{\mu} = 0.289 \frac{z_{inv} - z_{rot}}{1 + z_{abs}} < 1.8 \times 10^{-6}$$

$$< 1.8 \times 10^{-6}$$

$$< 1.4 \times 10^{-6}$$

$$(Murphy et al. 2008)$$

$$PKS1830-211 at z=0..8858$$

$$(Henkel et al. 2009)$$

 $= (2.25 \pm 0.84) \times 10^{-5}$

 $= (3.5 \pm 4.0) \times 10^{-6}$

Radio absorption lines are more sensitive: but only a few suitable absorbers know !

Chile - 2011

PKS1413+135 at z=0.2467

TXS0218+357 at z=0.6847

PMNJ0134-0931 at z=0.765

TXS0218+357 at z=0.6847

(Chengalur et al. 2003)

(Kanekar et al. 2005)

(Murphy et al. 2001;

Carilli et al. 2000; Wiklind et al. 1997, Varshalovich et al. 1996) Constraints on constants using radio absorption lines

- HI 21cm vs UV
- HI 21cm vs Molecular

$$x = rac{lpha^2 g_p}{\mu}; rac{\Delta x}{x} = rac{z_{UV} - z_{21}}{1 + z_{21}} = \left(\begin{array}{c} 0.63 \pm 0.99
ight) imes 10^{-5} & {
m Tzanavaris \, et \, al. \, (2007)} \\ = (6.8 \pm 1.0) imes 10^{-6} & {
m Kanekar \, et \, al. \, (2010)} \end{array}$$

 $y=g_plpha^2; rac{\Delta y}{y}=rac{z_{mol}-z_{21}}{1+z_{mol}}$ = (-0.18 ± 0.50) × 10⁻⁵

OH 18cm vs HI 21cm

$$F = g_p (\alpha^2 \mu)^{1.57}$$

• OH 18cm satellite

Ammonia

$$G = g_p (\alpha^2 \mu)^{1.85} = (-1.18 \pm 0.46) \times 10^{-5}$$
 PKS1413+135 at z=0.2467
(Kanekar et al. 2010).
Also Darling (2004) and 10134-0931 at z=0.765.

$$\frac{\Delta \mu}{\mu} = 0.289 \frac{z_{inv} - z_{rot}}{1 + z_{abs}} < 1.8 \times 10^{-6}$$

$$< 1.8 \times 10^{-6}$$

$$< 1.4 \times 10^{-6}$$

$$(Murphy et al. 2008)$$

$$PKS1830-211 at z=0..8858$$

$$(Henkel et al. 2009)$$

 $= (2.25 \pm 0.84) \times 10^{-5}$

 $= (3.5 \pm 4.0) \times 10^{-6}$

Radio absorption lines are more sensitive: but only a few suitable absorbers know !

Chile - 2011

PKS1413+135 at z=0.2467

TXS0218+357 at z=0.6847

PMNJ0134-0931 at z=0.765

TXS0218+357 at z=0.6847

(Chengalur et al. 2003)

(Kanekar et al. 2005)

(Murphy et al. 2001;

Carilli et al. 2000; Wiklind et al. 1997, Varshalovich et al. 1996)

Using 21-cm absorbers for the fundamental constant studies

Heliocentric frequency (MHz)

What is a good system for fundamental constant studies ?

AST(RON

Using 21-cm absorbers for the fundamental constant studies

Heliocentric frequency (MHz)

What is a good system for fundamental constant studies ?

Minimise uncertainity due to structure of the radio source.

Optical/UV source is compact (~AU scale) but radio sources show structure from pc to kpc scales (jets+lobes).

Need VLBI observations ... (milliarcsecond resolution)

AST(RON

Using 21-cm absorbers for the fundamental constant studies

Heliocentric frequency (MHz)

What is a good system for fundamental constant studies ?

Minimise uncertainity due to structure of the radio source.

Optical/UV source is compact (~AU scale) but radio sources show structure from pc to kpc scales (jets+lobes).

Need VLBI observations ... (milliarcsecond resolution)

.... and of course high resolution optical spectroscopy.

Chile - 2011

Wed, Jun 29, 2011

Chile - 2011

Wed, Jun 29, 2011

.... need to be careful.

AST(RON

Wed, Jun 29, 2011

Chile - 2011

Wed, Jun 29, 2011

Coming up

- 1) VLBA observations completed for all the sources.
- 2) 4 absorbers ($z \sim 1.3$) with radio sources compact at mas.
- 3) VLT observations of 3 are completed and analysis in progress.

.... constraints at z~1.3

DLA with molecular hydrogen and 21cm absorption at z=3.174

$$x = \frac{\alpha^2 g_p}{\mu}$$

$$\frac{\Delta\mu}{\mu} \le 4.0 \times 10^{-4}$$

From 21cm and metal absorption lines:

$$\frac{\Delta x}{x} = -(1.7 \pm 1.7) \times 10^{-6}$$

$$\frac{\mu}{\mu} = -(1.7 \pm 1.7) \times 10^{-6}$$
 or $\frac{\Delta \alpha}{\alpha} = -(0.85 \pm 0.85) \times 10^{-6}$

Srianand et al. 2010, MNRAS, 405, 1888

AST(RON

GMRT+WSRT survey of quasar galaxy pairs (z<0.3)

• Sample of 40 pairs at b<30 kpc covering a wide range of morphologies, environments.

• Measure the 21-cm absorbing gas covering fraction, connection between metallicity, dust, and the star formation rate.

Connection between the galaxies and the nature of 21-cm absorbers.

Chile - 2011

Wed, Jun 29, 2011

GMRT+WSRT survey of quasar galaxy pairs (z<0.3)

Preliminary results:

- •Observations of 10 pairs completed. 3 new detections.
- 50% probability of detecting 21-cm absorption at b< 20 kpc.

• z<1 DLAs have lower Call widths despite having smaller impact parameters and higher 21-cm optical depths.

(Gupta et al. 2010)

AST(RON

Chile - 2011

Normalised flux

Need more

AST(RON

Need more

Chile **-** 2011

AST(RON

Wed, Jun 29, 2011

Need more

Blind searches of 21cm absorption (no pre-selection and no dust bias)

Chile - 2011

Wed, Jun 29, 2011

Absorption line: survey speed

Driven by:

 $\begin{array}{c} \mbox{redshift}\\ \mbox{coverage}\\ \mbox{SurveySpeed}(\tau < \tau_o) \propto (A_e/T_{sys})^2 \, x \, \Delta z \, x \, N_t \end{array}$

sensitivity

number of targets

AST(RON

Absorption line: survey speed

Driven by:

of targets

	APERTIF	ASKAP	EVLA	MeerKAT	MeerKAT	-
				Phase-1	Phase-2	_
						-
Frequency coverage (GHz)	1.0 - 1.7	0.7 - 1.8	1.0-50	1 - 1.75	0.58 - 1.75	
Redshift coverage (21-cm)	0-0.42	0 - 1.03	0-0.51	0-0.42	0-1.45	
Bandwidth (GHz)	0.3	0.3	8	0.75	2	
Field of view (deg 2 ; $f=1.4{ m GHz}$)	8	30	$0.5/f^2$	$1/f^{2}$	$1/f^{2}$	
RMS (mJy; 5km/s [†] in 1hr)	2.5	4.0	1.6^{\ddagger}	1.0	1.0	
A_e/T_{sys} (m ² /K)	103	65	214	220	220	split receivers
Δz_{max}	0.3	0.6	0.4	0.4	1.5(1.0)	
$SS(\tau < \tau_o) / N_t$	0.16	0.12	0.90	1	3.6(2.3)	

[†] 23.5 kHz at 1.4 GHz; At 1200 MHz as estimated from EVLA exposure calculator.

MeerKAT 4000 hrs to search for 21cm Absorption Line Survey and OH absorbers at z<1.8.

Principal Investigators Neeraj Gupta (ASTRON, NL), Raghunathan Srianand (IUCAA, INDIA)

Co-Investigators (19)

- Europe: F. Combes (Observatoire de Paris), W. Baan, R. Morganti, T. Oosterloo (ASTRON),
 - P. Petitjean (IAP), T. van der Hulst (Kapteyn)
- Chile: C. Ledoux (ESO), P. Noterdaeme (Universidad de Chile)
- India: D. Bhattacharya, A. Kembhavi (IUCAA)
- S. Africa: C. Cress, M. Jarvis (Univ. of Western Cape), K. Moodley (Univ. of KwaZulu Natal)
- USA: A. Baker (Rutgers), S. Bhatnagar, C. Carilli, E. Momjian (NRAO)
- UK: R. Beswick (Univ. of Manchester), H. Klockner (Univ. of Oxford)

Image credit: E. de Blok (<u>http://www.ast.uct.ac.za</u>)

MALS: Observing plan

AST(RON

MALS: Specifications

Channel separation (kHz):	36 (18)	
Spectral rms (mJy):	0.7	
Line-to-continuum DR (dB):	60	
Spatial resolution (@ 1GHz):	~10"	

AST(RON

Intervening 21-cm absorbers from MALS

39 absorbers known till date. Only 12 at z<0.4.

Finally, only 5 molecular absorbers known at z>0.1.

<u>MALS detects > 600 intervening</u> 21-cm absorbers @ z< 1.8

MALS: Goals

- Blind search for 21cm and OH absorbers at z<1.8: using 580- 1750 MHz frequency band(s).
- Detect more than ~600 intervening 21-cm absorbers:
 20 times the number of absorbers known.
- 3) Measure the evolution of cold atomic and molecular gas at z<1.8: the z-range where most of the evolution in SFRD takes place.
- 4) Time variation of the fundamental constants of physics: using OH lines, and 21-cm and optical/UV absorption lines (SALT + VLT + ALMA).
- 5) Probe the magnetic field in absorbing galaxies: using rotation measure and Zeeman splitting.
- 6) Synergy with ALMA, EVLA, SALT, VLBA and VLT.

.... all the data will be public.

Blind searches of 21cm absorption

http://www.astron.nl/general/apertif/apertif

APERTIF

Increase the WSRT FOV by factor ~25. 8 square degrees !

AST(RON

Blind searches of 21cm absorption

http://www.astron.nl/general/apertif/apertif

APERTIF

Increase the WSRT FOV by factor ~25. 8 square degrees !

ASKAP FOV~ 30 square degrees

Similary ASKAP in southern hemisphere!

http://www.atnf.csiro.au/projects/askap/

MALS: Goals

- 1) Blind search for 21cm and OH absorbers at z<1.8.
- 2) Detect more than ~600 intervening 21-cm absorbers.
- 3) Measure the evolution of cold atomic and molecular gas at z < 1.8.
- 4) Time variation of the fundamental constants of physics.
- 5) Probe the magnetic field in absorbing galaxies.
- 6) Synergy with ALMA, EVLA, SALT, VLBA and VLT.

.... all the data will be public.

Thank you

Neeraj Gupta, ASTRON, The Netherlands email: <u>gupta@astron.nl</u> <u>http://www.astron.nl</u>/

AST(RON