

CO TOMOGRAPHY OF THE Z=4.05 PROTO-CLUSTER GN20

JACQUELINE HODGE

MAX PLANCK INSTITUTE FOR ASTRONOMY (MPIA)

COLLABORATORS:
CHRIS CARILLI (NRAO)
FABIAN WALTER (MPIA)
DOMINIK RIECHERS (CALTECH)

OVERVIEW

- INTRODUCTION TO SUBMILLIMETER GALAXIES
- THE TARGET: GN20
- THE DATA: OLD AND NEW
- RESULTS SO FAR
- PRELIMINARY ANALYSIS
- Conclusions

WHAT WE OBSERVE

- The stars in massive ellipticals formed
 - quickly (timescales ≤ 1 Gyr)
 - at early times (z > 2)
- Old stellar populations observed in early-type galaxies at z ≥ 1 → higher formation redshifts
- The more massive a galaxy, the earlier/faster the SF
 - SF preferentially quenched in more massive galaxies with cosmic time
- We should see population of intensely star forming, clustered galaxies at high-z

Collins et al. 2009

Pannella et al. 2009

SUBMILLIMETER GALAXIES (SMGs)

- Dusty, luminous starburst galaxies found in wide-field submillimeter surveys
- Gas-rich
- Relatively rare (10⁻⁵-10⁻⁶ Mpc⁻³)
- Luminosities ~10¹³ L_o
- SF-dominated, SFRs $\sim 10^3$ M_{\odot} yr⁻¹ (Alexander+2005, Menendez-Delmestre+2007, Pope+2008, Clements+2008)
- May trace high over-densities (Stevens+2003, Aravena+2010)
 - Formation of clusters/massive ellipticals
- Space density peaks around z ~ 2.3 (Chapman+2003, Wagg+2009)
- High-redshift tail extends above z = 4 (Schinnerer+2008,2009, Coppin+2009)
- Likely numerous enough above z=3.5 to account for massive galaxies between z=2 and z=3 (Daddi+2009)

THE BIG QUESTION

What is driving the intense star formation?

- Gas-rich mergers (Tacconi+2006,2008, Narayanan +2010)
 - Starburst-dominated, early stage
 - Scales ~few kpc, in nuclei
 - Timescale ~10⁷ yr

Momjian et al. 2005

- Cold-mode accretion (CMA) (Dave+2010)
 - Gas flows in along cold, dense filaments from IGM
 - Continuously streams in, cooling rapidly (no shock-heating)
 - Clouds of enhanced SF occur every few kpc across disk, eventually migrating to center to form stellar bulge
 - Timescales ~1 Gyr

GN20

- Originally detected with SCUBA (Pope 2007)
- Discovered serendipitously in CO (Daddi et al. 2009)
- z = 4.05
- One of the most luminous starburst galaxies known at z > 4
- Field shows significant overdensity, indicating proto-cluster environment
- Contains three SMGs: GN20, GN20.2a, GN20.2b
- All within 20" (140 kpc projected)

Morrison et al. 2010

Daddi et al. 2009

Daddi et al. 2009

PREVIOUS VLA OBSERVATIONS

GN20 field in CO 1-0

PREVIOUS VLA OBSERVATIONS

CO 2-1, B+C+D

Carilli et al. 2010

EVLA: D-ARRAY

- CO 2-1

GN20 Field

GN20

EVLA: B+D-ARRAY

>100 hours

GN20: Resolution 0.18"/1.2 kpc

Hodge et al. in prep

Molecular Gas Mass:

• $M_{H2} = 1.9 \times 10^{11} \, M_{\odot}$ ($\alpha = 0.8$) Dynamical Mass:

 $M_{\rm Dynamical} = 8.3 \times 10^{10} \, \rm M_{\odot}$

GAS VERSUS STARS

- Obscuration?
- Or due to astrometric uncertainty...

Grey scale: HST+ACS I band; contours: CO 2-1

GAS VERSUS STARS

Grey scale: HST+ACS I band; contours: CO 2-1

KINEMATICS

(80 km/s channels)

BRIGHTNESS TEMPERATURES

Previous VLA Data:

New

EVLA

Data:

Channel 3 of 12

 $#1: T_B = 24K$

Channel 4 of 12

 $#1: T_B = 25K$

#2: $T_B = 22K$

#3: $T_B = 21K$

Channel 9 of 12

 $#1: T_B = 22K$ $#2: T_{B} = 19K$

Channel 10 of 12

 $#1: T_B = 25K$

#2: $T_B = 20K$

 $#3: T_B = 17K$

CONCLUSIONS

- This is some of the highest quality data on a high-z SMG to date
- Because of the spatial/spectral resolution, we are able, for the first time, to investigate the brightness temperatures of individual gas clumps
- Despite being one of the brightest sources out there, we still needed a huge investment of EVLA time to get only to this low S/N regime
- This high spectral and spatial resolution data gives a preview of what will become possible on a regular basis with ALMA

