

Hamburg/ESO DLA survey

Content

DLAs

H/ESO DLAs

Magnitude bias

Conclusion

Evidence for a magnitude bias in the Hamburg/ESO Damped Ly α survey

A. Smette (ESO), L. Wisotzki (Potsdam), C.Ledoux (ESO), O.Garcet (Liege), S.Lopez (U.de Chile), P.Noterdaeme (ESO)

> Multiwavelength views of the ISM in high-redshift galaxies 30 Jun 2011

Content

Hamburg/ESO DLA survey

Content

- DLAs
- H/ESO DLAs
- Magnitude bias
- Conclusion

• Damped Ly α systems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

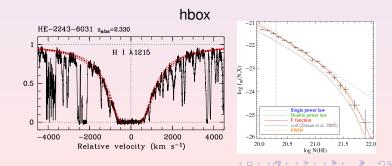
- The H/ESO survey.
- Magnitude bias.
- Conclusion

Damped Ly α systems

Hamburg/ESO DLA survey

Contont

DLAs


H/ESO DLAs

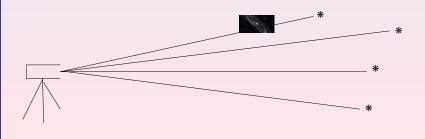
Magnitude bias

Conclusion

Damped Ly α systems:

- log $N_{\rm HI} \ge 20.3$
- from *f*(*N*_{HI}): contain most of the neutral gas in the Universe
- since $\Omega_{\rm HI} \propto \int_{N_{\rm min}}^{\infty} N_{\rm HI} f(N_{\rm HI}) \, \mathrm{d}N_{\rm HI}$, survey for DLAs can determine cosmological density of gas

Survey for Damped Ly α systems


Hamburg/ESO DLA survey

Content

DLAs

- H/ESO DLAs
- Magnitude bias
- Conclusion

- observe high-redshift QSOs
- search for damped Ly α systems
- sum up their column densities, multiply by the correct factor
- that's it!?

Hamburg/ESO DLA survey

- Content
- DLAs
- H/ESO DLAs
- Magnitude bias
- Conclusion

- gravitational lensing: theory predicts a bias, which is a combination of magnification bias and 'by-pass' effect; mainly at $Z \sim 0.7$ for z > 1 QSOs (Bartelmann & Loeb 1996; Smette, Claeskens, Surdej 1997): more DLAs should be observed at $z \sim 0.7$ than expected by chance, as QSOs with foreground DLAs are amplified and therefore preferably picked-up in magnitude limited samples;
- dust (Fall & Pei 1997): extinction due to dust increases the apparent magnitude of the background quasar; such quasars could be excluded from magnitude-selected sample.

Hamburg/ESO survey for Damped Ly*alpha* systems

Hamburg/ESO DLA survey

- Content
- DLAs
- H/ESO DLAs
- Magnitude bias
- Conclusion

- based on the Hamburg QSO survey:
 - based on blue Digitized Sky Survey, 8000 deg²
 - objective prism slitless spectra;
 - rather relaxed colour selection criteria, which allow also QSO with moderately red colours;
 - spectroscopic confirmation (ESO 1.5m);
- z > 1.7 QSOs observed at medium resolution with ESO 1.5m;
- automatic search for large equivalent widths absorption lines;
- VLT/UVES confirmation for lines with $w_r > 7.5$ Å;
- statistical sample:
 - exclude BAL QSOs;
 - *z*_{em} > 1.6;
 - more than 5000 km s⁻¹ from emission redshift.

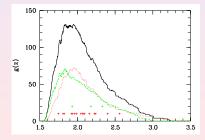
Hamburg/ESO survey for Damped Lyalpha systems

Hamburg/ESO DLA survey

Content

DLAs

H/ESO DLAs


Magnitude bias

Conclusion

- 19 DLAs in 188 QSOs with < *B*_J >= 17.37;
- $\Delta z = 87.7$; $\Delta \chi = 271$ (for ΛCDM);

•
$$n(z) = 0.22 \pm 0.05;$$

•
$$10^3 \Omega_{
m gas} = 1.04 \pm 0.33$$
; (for ACDM);

Hamburg/ESO survey for Damped Lyalpha systems

Hamburg/ESO DLA survey

- Content
- DLAs
- H/ESO DLAs
- Magnitude bias
- Conclusion

• Important property: probes bright end of QSO LF

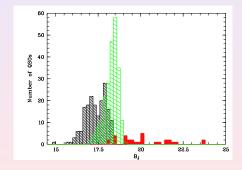


Figure: Bulk of SDSS QSOs have $B_{\rm J} \sim 19.5$

Hamburg/ESO DLA survey

Content

DLAs

H/ESO DLAs

Magnitude bias

Conclusion

We divided sample in 2 sub-samples with (nearly) identical $\Delta \chi$, based on $B_{\rm J}$; critical magnitude is $B_{\rm J} = 17.4$.

	Whole	Bright	Faint
	Sample	Sub-Sample	Sub-Sample
# of QSOs	188	93	95
Δz	87.7	43.6	44.0
$\Delta \chi$	271	134	137
$< B_{ m J} >$	17.37	16.85	17.87
# of DLAs	19	3	16

Poisson statistics: probability to obtain the observed numbers in the 2 sub-samples from the same mean number density is < 0.003.

Evidence for a magnitude bias

Hamburg/ESO DLA survey

Content

DLAs

H/ESO DLAs

Magnitude bias

Conclusion

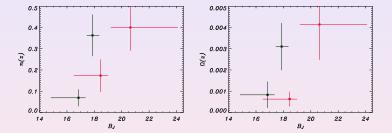


Figure: *Left:* Number densities of DLA systems in the bright and faint sub–samples of the H/ESO survey (black, left–most points) and CORALS (red, right–most points). *Right:* Idem, for the cosmological density of neutral gas.

What is the origin for magnitude bias ?

Hamburg/ESO DLA survey

- Content
- DLAs

H/ESO DLAs

Magnitude bias

Conclusion

- General behavior is what people would expect from a dust bias: more DLAs, larger N_{HI} at faint QSO magnitudes.
- However, dust absorption does not know about the background QSOs: dust affects as much the faint and bright samples!
- if QSO number counts is a power law:

$$\log N(< B) \propto B, \tag{1}$$

the effect of dust is

$$\log N($$

i.e. it shifts the power law to smaller counts, by the same ratio for both the faint and bright samples!

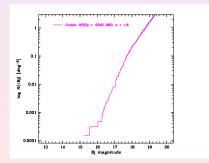
What is the origin for magnitude bias ?

Hamburg/ESO DLA survey

Content

DLAs

H/ESO DLAs


Magnitude bias

Conclusion

DLAs causing large extinction are rare:

- large $N_{\rm HI}$ are rare: slope of log $f(N_{\rm HI}) \sim -3$
- if dusty, such DLAs need to be in front of bright QSOs, which are rarer than faint ones!

Way out? the QSO number counts is not a power law ...

What is the origin for magnitude bias ?

Hamburg/ESO DLA survey

Content

DLAs

H/ESO DLAs

Magnitude bias

Conclusion

But...does not work numerically! Even with Milky Way gas-to-dust ratio, only change of n(z) by 50% is possible

Conclusion

Hamburg/ESO DLA survey

- Content
- DLAs
- H/ESO DLAs
- Magnitude bias
- Conclusion

- magnitude dependent bias is significant in the H/ESO DLA survey: 16 DLAs in faint sub-sample vs 3 in bright sub-sample;
- such magnitude dependent bias is nearly significant in the CORALs,

< 日 > < 同 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• but it does not seem to be caused by dust!