TRACING HOT DUST SINCE Z=1-2 EVOLUTION OF IR LUMINOSITY FUNCTIONS AND LUMINOSITY DENSITIES

WANNA-BE-DR HUGO MESSIAS

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES

SANTIAGO, 30TH JUNE 2011

Monday, September 12, 2011

Supervisor José M.Afonso

Bahram Mobasher

Collaborators

Andrew M. Hopkins Mara Salvato

OUTLINE

XR

Radio

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

INTRO .WHY INFRARED? .WHY DUST?

STRATEGY

.TRACING HOT DUST .SAMPLE .AGN: THE KI CRITERION

IR

UV

Optical

LUMINOSITY FUNCTIONS THE AGN BOOST

DUST .LUMINOSITY DENSITY FUNCTIONS .EVOLUTION

FUTURE

IMAGE CREDITS: CHANDRA: NASA/CXC/SAO; GALEX: NASA/JPL-CALTECH; HST: NASA/AURA/STSCI/HUBBLE HERITAGE TEAM; SPITZER: NASA/JPL-CALTECH, VLA: MPIFR BONN

HST

Spitze

SANTIAGO, 30TH JUNE 2011. HUGO MESSIAS

Monday, September 12, 2011

INTRO WHY INFRARED? DUST?

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

XR UV handr Radio Optical Spitze HST

IMAGE CREDITS: CHANDRA: NASA/CXC/SAO; GALEX: NASA/JPL-CALTECH; HST: NASA/AURA/STSCI/HUBBLE HERITAGE TEAM; SPITZER: NASA/JPL-CALTECH, VLA: MPIFR BONN WHAT...

...DOES IR SHOW? .COLD LONG-LIVED STARS .EVOLVED STARS .DUST

...DOES DUST HIDE? .STAR FORMATION (SF) .ACTIVE GALACTIC NUCLEI (AGN)

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

FACTS

.MOSTLY EMITTING AT MIR/FIR/SUB-MM WAVELENGTHS .HIDES INTENSE SF/AGN ACTIVITY

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

NARAYANAN ET AL.(2010)

FACTS

.MOSTLY EMITTING AT MIR/FIR/SUB-MM WAVELENGTHS .HIDES INTENSE SF/AGN ACTIVITY

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

.MOSTLY EMITTING AT MIR/FIR/SUB-MM WAVELENGTHS .HIDES INTENSE SF/AGN ACTIVITY

QUESTIONS .DO WE REALLY UNDERSTAND IT?

NARAYANAN ET AL.(2010)

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

.MOSTLY EMITTING AT MIR/FIR/SUB-MM WAVELENGTHS .HIDES INTENSE SF/AGN ACTIVITY

QUESTIONS

.DO WE REALLY UNDERSTAND IT? .HOW ABOUT EVOLUTION?

STRATEGY TRACING HOT DUST

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

FACTS

.MOSTLY EMITTING AT MIR/FIR/SUB-MM WAVELENGTHS .HIDES INTENSE SF/AGN ACTIVITY

QUESTIONS

.DO WE REALLY UNDERSTAND IT? .HOW ABOUT EVOLUTION? .HOW ABOUT HOT DUST?

ESTIMATE LUMINOSITIES

.1.6μM - INTERPOLATION .3.3μM - OBSERVED BAND

HOT DUST CONTRIBUTION AT IR WAVELENGTHS. DASHED LINE REFERS TO ARP220, WHILE THE DOTTED LINE TO IRAS 19254-7245.

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

SAMPLE SELECTION

.COSMOS (ILBERT ET AL.2009) .EARLY/LATE/STARB. - SED FITTING .AGN - K-[4.5]<0 OR KI

AGN IR SELECTION: KI

- PROS:
- .SIMPLE
- .MORE COMPLETE
- ALLOW DEEPER FLUX LEVELS
- .STATISTICALLY LARGER SAMPLES

CONS:

.RESTRICTED TO IRAC BANDS .CONTAMINATION BY SF GALAXIES .BIAS TOWARD LUMINOUS AGN .BIAS TOWARD UNOBSCURED AGN

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

3 (a) (b) 2 1 0 K_s-[4.5] (AB) 3 C d 2 1 0 -1 2 2 -1 0 1 -1 0 1

[4.5]-[8.0] (AB)

SAMPLE SELECTION

.COSMOS (ILBERT ET AL.2009) .EARLY/LATE/STARB. - SED FITTING .AGN - K-[4.5]<0 OR KI

AGN IR SELECTION: KI

PROS:

.SIMPLE

.MORE COMPLETE

ALLOW DEEPER FLUX LEVELS

.STATISTICALLY LARGER SAMPLES

CONS:

.RESTRICTED TO IRAC BANDS .CONTAMINATION BY SF GALAXIES .BIAS TOWARD LUMINOUS AGN .BIAS TOWARD UNOBSCURED AGN

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

.COSMOS (ILBERT ET AL.2009) .EARLY/LATE/STARB. - SED FITTING .AGN - K-[4.5]<0 OR KI

AGN IR SELECTION: KI

PROS:

.SIMPLE

.MORE COMPLETE

.ALLOW DEEPER FLUX LEVELS

.STATISTICALLY LARGER SAMPLES

CONS:

.RESTRICTED TO IRAC BANDS .CONTAMINATION BY SF GALAXIES .BIAS TOWARD LUMINOUS AGN .BIAS TOWARD UNOBSCURED AGN

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

.COSMOS (ILBERT ET AL.2009) .EARLY/LATE/STARB. - SED FITTING .AGN - K-[4.5]<0 OR KI

AGN IR SELECTION: KI

PROS:

.SIMPLE

.MORE COMPLETE

ALLOW DEEPER FLUX LEVELS

.STATISTICALLY LARGER SAMPLES

CONS:

.RESTRICTED TO IRAC BANDS .CONTAMINATION BY SF GALAXIES .BIAS TOWARD LUMINOUS AGN .BIAS TOWARD UNOBSCURED AGN

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

SAMPLE SELECTION

.COSMOS (ILBERT ET AL.2009) .EARLY/LATE/STARB. - SED FITTING .AGN - K-[4.5]<0 OR KI

AGN IR SELECTION: KI

- PROS:
- .SIMPLE
- .MORE COMPLETE
- .ALLOW DEEPER FLUX LEVELS
- .STATISTICALLY LARGER SAMPLES

KI. THE DASHED BLUE FRONTIERS DELIMIT THE AGN LOCI. THE COLOUR TRACKS ARE DIVIDED INTO (A) EARLY/LATE, (B) STARBURSTS, (C) HYBRIDS, AND (D) AGN. THE DOTTED PORTION OF THE TRACKS INDICATE O<Z<1, SOLID OTHERWISE. RED DOTS MARK Z=2.5.

3 (a) (b) 2 1 0 K_s-[4.5] (AB) 3 С a 2 1 0 -1 2 2 0 1 - 1 Ω -1 [4.5] - [8.0] (AB)

KI. THE DASHED BLUE FRONTIERS DELIMIT THE AGN LOCI. THE COLOUR TRACKS ARE DIVIDED INTO (A) EARLY/LATE, (B) STARBURSTS, (C) HYBRIDS, AND (D) AGN. THE DOTTED PORTION OF THE TRACKS INDICATE O<Z<1, SOLID OTHERWISE. RED DOTS MARK Z=2.5.

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

SAMPLE SELECTION

.COSMOS (ILBERT ET AL.2009) .EARLY/LATE/STARB. - SED FITTING .AGN - K-[4.5]<0 OR KI

AGN IR SELECTION: KI PROS: .SIMPLE .MORE COMPLETE .ALLOW DEEPER FLUX LEVELS .STATISTICALLY LARGER SAMPLES

CONS:

RESTRICTED TO IRAC BANDS CONTAMINATION BY SF GALAXIES BIAS TOWARD LUMINOUS AGN BIAS TOWARD UNOBSCURED AGN

(a) (b) 0.5 0 [3.6]-[4.5] (AB) 1 °°0 0 (d) (c) 0.5 0 -0.5 2 0 0 1 2 1 [5.8]-[8.0] (AB)

STERIN ET DAS (2000 55) L'ME DERED NITHER BASHELDMBLUEHER ANGINERSO DE LIMHE TOBE OAUGINT RACIONS THE DOVILDEUR INFRAC (45) ARRELDY/LADIED (18) TOTARBEARBLS/ (G)TEHY (BR) DSTARBD R(SD)S, A (40) HYB R DOS, TEAD DO (PD) OAG NO.F THEE DORACTES PND RIC ANE OF ZIA É, TSRALCINS ON THE BASTIS (D. 2001 SIDIAR E 2002 SISE.

SANTIAGO, 30TH JUNE 2011. HUGO MESSIAS

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

SAMPLE SELECTION

.COSMOS (ILBERT ET AL.2009) .EARLY/LATE/STARB. - SED FITTING .AGN - K-[4.5]<0 OR KI

AGN IR SELECTION: KI PROS: .SIMPLE .MORE COMPLETE .ALLOW DEEPER FLUX LEVELS .STATISTICALLY LARGER SAMPLES

CONS:

RESTRICTED TO IRAC BANDS CONTAMINATION BY SF GALAXIES BIAS TOWARD LUMINOUS AGN BIAS TOWARD UNOBSCURED AGN

IR luminosity functions

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

WORTH OF NOTE

.BIMODALITY (DRORY ET AL.2009 AND REFS)

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

WORTH OF NOTE

. BIMODALITY (DRORY ET AL. 2009 AND REFS)

.FAINT-END AGN AT LOW-Z

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

TOT EARLY -2SB [Mpc⁻³ ΔM⁻¹ - 9-5-0.21<z<0.52 0.05<z<0.19 $log(\Phi)$ 0.52<z<0.94 0.97<z<1.86--6 -25 -20 -15 -25 -20-15M_{1.6}

WORTH OF NOTE .BIMODALITY (DRORY ET AL.2009 AND REFS)

.FAINT-END AGN AT LOW-Z

.BRIGHT-END AGN AT HIGH-Z: FLUX BOOST => BIASED MASS ESTIMATES

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

0.52<z<0.94 - 0.97<z<1.86 0.05<z<0.19 0.21<z<0.52 -2[Mpc⁻³ ΔM⁻¹ 8^{−1} LATE EARLY log(ф) ,-W -6 STARB. AGN -25 -20 -15 -25-20-15M_{1.6}

WORTH OF NOTE .BIMODALITY (DRORY ET AL.2009 AND REFS)

.FAINT-END AGN AT LOW-Z

.BRIGHT-END AGN AT HIGH-Z: FLUX BOOST => BIASED MASS ESTIMATES

.HUMP BUILD-UP vs AGN ACTIVITY

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

- 0.52<z<0.94 - 0.97<z<1.86 0.05<z<0.19 0.21<z<0.52 -2[Mpc⁻³ ΔM⁻¹ 8^{−1} LATE EARLY log(ф) ,-W -6 STARB. AGN -25-20-15 -25-20-15M_{1.6}

WORTH OF NOTE .BIMODALITY (DRORY ET AL.2009 AND REFS)

.FAINT-END AGN AT LOW-Z

.BRIGHT-END AGN AT HIGH-Z: FLUX BOOST => BIASED MASS ESTIMATES

.HUMP BUILD-UP vs AGN ACTIVITY

.AGN DOWNSIZING?

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

WORTH OF NOTE 0.52<z<0.94 0.97<z<1.86 0.05<z<0.19 0.21<z<0.52 .BIMODALITY (DRORY ET AL.2009 AND REFS) -2 .FAINT-END AGN AT LOW-Z [Mpc⁻³ ΔM⁻¹ BRIGHT-END AGN AT HIGH-Z: FLUX BOOST => BIASED MASS ESTIMATES LATE EARLY .HUMP BUILD-UP vs AGN ACTIVITY .AGN DOWNSIZING? X log(中) + ,-W -6 STARB. AGN -25-20 -15 -25-20-15M_{1.6}

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

TOT EARLY -2 SB [Mpc⁻³ ΔM⁻¹ 2⁻ 2⁻ 0.05<z<0.19 0.21<z<0.52 log(∲) + + 0.52<z<0.94 0.97<z<1.86--6 -25-20 -15 -25 -20-15M_{3.3}

WORTH OF NOTE .BIMODALITY (DRORY ET AL.2009 AND REFS)

.FAINT-END AGN AT LOW-Z

.BRIGHT-END AGN AT HIGH-Z: FLUX BOOST => BIASED MASS ESTIMATES

.HUMP BUILD-UP vs AGN ACTIVITY

.AGN DOWNSIZING? X

(e)15µm z=[0.6,0.8] log [\$/Mpc^3 log^1L] w/ MIPS 24µm -5 de+06 z=0.7 Xu00/Huang+07 LUF).0 10.5 log [vL^{15µm}/L₀] 9.5 10.0 11.0 11.5 (b) 8µm z=[0.6,0.8] log [\$/Mpc⁻³ log⁻¹L] -5FU ET AL.(2010) 10.0 11.0 11.5 12.0 10.5 $\log \left[\nu L_{\nu,rest}^{\theta\mu m}/L_{0}\right]$

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

WORTH OF NOTE .BIMODALITY (DRORY ET AL.2009 AND REFS)

.FAINT-END AGN AT LOW-Z

.BRIGHT-END AGN AT HIGH-Z: FLUX BOOST => BIASED MASS ESTIMATES

.HUMP BUILD-UP vs AGN ACTIVITY

.AGN DOWNSIZING? X

SANTIAGO, 30TH JUNE 2011. HUGO MESSIAS

8/12

IR THE AGN BOOST

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

THE ERG CASE EXTREMELY RED GALAXIES

COLOUR SELECTION .EROS - 1775-Ks>2.5 .IEROS - Z850-[3.6]>3.25 .DRGS - J-Ks>1.35

TWO KNOWN PROPERTIES .MASSIVE .HIGH AGN FRACTION

Monday, September 12, 2011

DUST LUMINOSITY DENSITY FUNC.

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

SANTIAGO, 30TH JUNE 2011. HUGO MESSIAS

DUST LUMINOSITY DENSITY FUNC.

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

TOT 26 EARLY -₩ 24 LATE SB AGN 0.05<z<0.19 0.21<z<0.52 0.52<z<0.94 0.97<z<1.86 20 -25 -20 -15 -25-20-15

M_{1.6}

EARLY .CONTRIBUTE THE LEAST

LATE

.AS MUCH AS STARBURST AT THE BRIGHT-END

STARBURST

.HIGHEST CONTRIBUTOR TO THE FAINT-END

AGN

.NUMBER vs CONTRIBUTION

DUST EVOLUTION

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

TOTAL

. ...?

.DECAYS 1DEX MORE THAN SFH .FAILURE TO EXTRACT DUST EMISSION? .DUST DEPLETION? (DUNNE ET AL.2011) .DUST AT LARGER DISTANCES?

AGN vs STARBURST

3.3µм vs 6.2µм

\mathbf{Z}

Solid lines connect $3.3\mu m$ estimates probed by IRAC bands. Circles refer to local $6.2\mu m$ estimates. The shaded regions show the 3σ trend of the sfh of the universe (Hopkins&Beacom 2006, darker region refers to obscured sf, Charry&Pope 2011) scaled to the dust estimate at 0.52<z<0.94.

DUST EVOLUTION

MULTIWAVELENGTH VIEWS OF THE ISM IN HIGH-REDSHIFT GALAXIES. SANTIAGO, CHILE, 2011

TOTAL

.DECAYS 1DEX MORE THAN SFH .FAILURE TO EXTRACT DUST EMISSION? .DUST DEPLETION? (DUNNE ET AL.2011) .DUST AT LARGER DISTANCES?

. ...?

AGN vs STARBURST

3.3µм vs 6.2µм

 \mathbf{Z}

SOLID LINES CONNECT 3.3µM ESTIMATES PROBED BY IRAC BANDS. CIRCLES REFER TO LOCAL 6.2µM ESTIMATES. THE SHADED REGIONS SHOW THE 30 TREND OF THE SFH OF THE UNIVERSE (HOPKINS&BEACOM 2006, DARKER REGION REFERS TO OBSCURED SF, CHARRY&POPE 2011) SCALED TO THE DUST ESTIMATE AT 0.52<z<0.94.