Multiwavelength Views of the ISM in High-Redshift Galaxies, Santiago, 27/06/2011

"High-redshift dust emission and CO emission predictions for ALMA"

Juan E. Gonzalez, ESO, Garching

TAMASIS project

- People:

- ESO (Eelco van Kampen)
- CE Saclay (Marc Sauvage, Pierre Chanial, Barbey Nicolas)
- IAS Orsay (Abergel Alain)
- Leiden (Paul van der Werf, Meijerink Rowin)

- Generate tools to produce mock sub-mm maps predictions for Herschel, SCUBA-2 & ALMA.

Models

- Semi-analytical models:
 - DM evolution (numerical simulations)
 - BM evolution (analytic simulation)
- Semi-analytical models: Dark Matter:
 - Millennium simulation:
 - 10¹⁰ particles to follow the dark matter distribution
 - cubic region 500h⁻¹Mpc on a side
 - 63 outputs in redshift

Models

- Semi-analytical models: Baryonic Matter:
 - Set of "equations" for each physical process considered (e.g. Star formation, SN feedback, galaxy mergers, stellar population evolution, dust extinction & emission).
 - Catalogue with galaxy properties and positions inside the volume.

Splitting the Interstellar Medium

Durham GALFORM semi-analytic model

- Compute atomic and molecular hydrogen components

Lightcone properties

- The orientation of the lightcone is given by the vector: (3, 4, 1).
- With no repetition of galaxies in the Simulation:
 - Gives a area of about 2 square deg.
 - Out to $z^{4.2}$

For band 3 we can identify transitions: CO (2->1) [230.5Ghz] [1301μm] CO (3->2) [345.8Ghz] [867.5μm] CO (4->3) [461.0Ghz] [650.8μm]

in redshift range: z= 1 -> 1.7 in redshift range: z= 2 -> 3.1 in redshift range: z= 3 -> 4.5

Early 2011	Mid 2011		Can Mark	Late 2011		2013		
Call for ALMA Early Early Science Proposal Early Science begins submission deadline						66 ALMA Antennas		
	COURSE STORY	+14	A194-10-10-10-10-10-10-10-10-10-10-10-10-10-	B	The month of the second	Real Property - The	LUSE I DELL	
Bands:	3 84-116	4 125-163	5 163-211	6 211-275	7 275-373	8 385-500	9 602-720	10 787-950

	Early Science	Array Completion				
Antennas	≥16 x 12m	At least 54 x 12m & 12 x 7m				
Bands	Bands 3, 6, 7, 9	Bands 3, 4, 6, 7, 8, 9 & 10				
Maximum Bandwidth	16 GHz (2 polariza	tions x 8 GHz)				
Correlator Configurations	21 (0.02 – 40 km/s)	71 (0.01 – 40 km/s)				
Maximum Angular Resolution	$0.02'' \left(\frac{\lambda}{1 \text{ mm}}\right) \left(\frac{\lambda}{1 \text{ mm}}\right)$	10 km Max Baseline				
Max Baseline	250m (may achieve 500m)	15 km				
Continuum Sensitivity (60 sec, Bands 3–9)	~0.2 – 4.2 mJy	~0.05 – 1 mJy				
Spectral Line Sensitivity (60 sec, 1 km/sec, Bands 3–9)	~30 – 250 mJy	~ 7 – 62 mJy				
Sensitivity Calculator: http://science .nrao.edu/alma/tools.html						

CO Lines estimations

To convert the amount of molecular Hydrogen to CO luminosities we apply standard conversion factors:

$$I_{\rm CO}/{\rm K\,km\,s}^{-1} = \frac{N_{\rm H_2}/{\rm cm}^{-2}}{{\rm X} \times 10^{-20}}.$$

First, we use the assumption made in Lagos+ 2011 for transition 1->0 CO (1->0) X=3.5 for quiescent-galaxies (e.g. Boselli+ 2002, Blitz+ 2007) and X=0.5 for burst-galaxies (e.g. Meier & Turner 2004)

Then, we take L_CO(3 -> 2) \approx 0.6 × L_CO(1->0) (Harris+ 2010) : burst galaxies L_CO (3-> 2) \approx 1 x L_CO(1->0) (Zhu+ 2009): quiesc. galaxies

60'' by 60''

Summary

- Splitting the ISM into the atomic and molecular hydrogen, we can study the evolution of the ratio $\frac{\sum_{H_2}}{\sum_{H_1}}$
- By assuming a simple conversion we can make predictions for the observation of the CO lines at high-z with ALMA,
- New observations will allow to refine these conversions.