Properties and kinematics of ultra-compact dwarf galaxies in nearby clusters

Michael Hilker (ESO/Garching)

Main collaborators: S. Mieske (ESO), M. Frank (ARI/Heidelberg), I. Misgeld (LMU/Munich), T. Richtler (Concepcion/Chile), T. Puzia (PUC/Chile), L. Infante (PUC/Chile), H. Baumgardt (U. of Queensland), I. Georgiev, Y. Schuberth (AlfA/Bonn)

Characteristics of "Ultra-Compact Dwarf galaxies" (UCDs)

<u>Ultra-compact dwarf galaxies*</u>

Luminosities:	-13.5 <m<sub>v<-11.0</m<sub>	(although ω Centauri, M _V =-10.4, might be a small UCD)				
Half-light radii:	5 <r<sub>h,p<30 pc</r<sub>	(luminosity-size relation; a few have LSB envelopes with 80 <r<sub>eff<120 pc)</r<sub>				
Velocity dispersion:	25<σ₀<45 km/s	(extrapolated from the observed velocity dispersion)				
Mass range:	≥2×10 ⁶ -10 ⁸ M _☉	(dynamical mass)				
M/L _{dyn} :	2-10	(different from the expected M/L of canonical stellar populations)				
Occurence:	In cores of galaxy clusters or close to major isolated/field galaxies					

*First discoveries: Hilker et al. (1999), Drinkwater et al. (2000); name 'UCD': Phillipps et al. (2001)

Colour-magnitude diagram of ,hot' stellar systems in galaxy clusters

Surface density-mass relation of hot stellar systems

Dynamical mass-to-light ratio vs. mass/luminosity

Dr. Michael Hilker (AlfA, University Bonn)

 0.87 ± 0.21 4.06 ± 0.15 6.06 ± 1.23 2.13 ± 0.29 9.36 ± 1.87 2.16 ± 0.29

Hasegan et al. 2005 (ApJ 627, 203)

 0.55 ± 0.23

Dwarf-Globular Transition Objects (DGTOs)

V-band image (KPNO 4m) ACS footprint

 $M_{k}(10^{7} M_{\odot})$

0.58 ± 0.10

 2.56 ± 0.46

 $M_{k}/L_{V}(M_{\odot}/L_{V,\odot})$

 2.94 ± 0.68

 5.83 ± 1.36

2.98 ± 1.35

The top 4 formation scenarios for UCDs

"Remnant nuclei of disrupted galaxies" - NCs (Bekki et al. 2001, 2003, Bassino et al. 1994, Zinnecker et al. 1988)

VS.

"Merged supercluster complexes" - MSCs (Fellhauer & Kroupa 2002, 2005, Kroupa 1998)
↓ = vs.
"Most massive globular clusters" - GGCs
(Mieske et al. 2002, 2004, Norris & Kannappan 2011)
vs.
"Genuine compact dwarf galaxies" - cEs

(Phillipps et al. 2001, Drinkwater et al. 2004)

The Most Massive YMCs

Clusters with $M \sim 10^7$ M_{\odot} in starbursts \rightarrow ICMF more top-heavy than in spiral discs

Arp 220 - most massive clusters $\sim 10^7 M_{\odot}$, $R_{eff} \sim 10 \text{ pc}$ (Wilson et al. 2006).

NGC 7252 - W30: $M_{Vir} = (1.6 \pm 0.3) \times 10^7 M_{\odot}, R_{eff} \sim 9 \text{ pc}$ NGC 1316 - G114: $M_{Vir} = (1.6 \pm 0.1) \times 10^7 M_{\odot}, R_{eff} \sim 4 \text{ pc}$ (Bastian et al. 2006)

Slide taken from P. Goudfrooij's presentation at the ESO Workshop on `Dynamics of Low-Mass Stellar Systems: From Star Clusters to Dwarf Galaxies', Santiago, Chile, April 4-8, 2011

NGC 7252 - W3: $M_{Vir} = (8 \pm 2) \times 10^7 M_{\odot}$,

 $R_{eff} \sim 18 \text{ pc}$ (Maraston et al. 2004)

The origin of GCs and UCDs in the

Where it all began: the Fornax cluster

Radial velocity measurements of GCs:

Minniti et al. (1998) Kissler-Patig et al. (1999)

Radial velocity measurements of galaxies: Hilker (PhD Thesis 1998) Hilker et al. (1999)

2df all-object Fornax spectroscopic survey: Drinkwater et al. (2000) Phillipps et al. (2001)

Drinkwater et al. (2003)

red GCs < blue GCs < ωCen's < UCDs < dE,Ns < dEs < all galaxies _{Hilker (2010)}

Dr. Michael Hilker (ESO, Garching)

High S/N VLT/FORS spectra of ~60 bright GCs/UCDs in Fornax (M_V <-9.5)

Puzia, Hilker et al. (2011, in prep.)

Abundances and ages of GCs/UCDs in the Fornax cluster

Puzia, Hilker et al. (2011, in prep.)

UCDs in Centaurus, Hydra I, Virgo and Coma

Kinematics of UCDs/GCs in the Hydra I cluster

The Relationships between Compact Stellar Systems: A Fresh View of UCDs in M87

Brodie et al 2011

No size-L relationship!

Slide taken from J. Brodie's presentation at the ESO Workshop on `Dynamics of Low-Mass Stellar Systems: From Star Clusters to Dwarf Galaxies', Santiago, Chile, April 4-8, 2011

M87: luminosity/size - kinematics connections

Taken from A. Romanowsky's presentation at the ESO Workshop on `Dynamics of Low-Mass Stellar Systems: From Star Clusters to Dwarf Galaxies', Santiago, Chile, April 4-8, 2011

UCDs in the Coma cluster

HST/ACS Coma **Cluster Treasury** Survey (red boxes) Keck/LRIS spectroscopy (black boxes) Blue dots:

27 confirmed UCDs with M_R <-12 mag

UCDs around the central Coma gE NGC 4874

Kinematics of UCDs in Coma

Blue symbols: (V-I) < 1.05 mag Red symbols: (V-I) > 1.05 mag Open circles: Compact dEs (cEs)

Most UCDs and cEs are kinematically related to major galaxies or Coma cluster substructure

Chiboucas et al. (2010)

The UCD populations in comparison:

Cluster	D [Mpc]	R _c [kpc]	N _{UCD} all <	N _{UCD} 100kpc	N _{UCD} <0.5R _c	N _{>ωCen} all	N _{>ωCen} <r<sub>c</r<sub>	C _{UCD} <r<sub>c</r<sub>
Fornax	20	100	59	34	20	154	106	~80%
Hydra I	42	350	38	31	26	65	56	<50%
Centaurus	46	220	28	20	22	(30)	(22)	<40%
Virgo	15	350	>28	>25	>20	?	?	?
Coma	100	270	>27	>20	>18	?	?	?

UCDs: $M_V < -11 \text{ mag}$ > ω Cens: $M_V < -10.4 \text{ mag}$

The specific frequency of UCDs

Summary

- `UCDs' are defined through their mass-size relation and enhanced dynamical mass-to-light ratios – roughly occurring at >2x10⁶M_☉
- `UCDs' share properties of nuclear star clusters, e.g. the mass-size relation, but also are the "tip of the iceberg" of rich globular cluster systems → they are mostly of `star cluster origin'
- UCDs are mostly concentrated around major galaxies but also are found in the intra-cluster space, they do not follow the spatial distribution of nucleated dEs
- The specific frequency of UCDs follows that of GCs, i.e. a large UCD population is expected in rich globular cluster systems
 → the formation of UCDs is linked to that of GCs
- Still the studies of the UCD population in nearby clusters suffer from incompleteness effects – more spectroscopic surveys are needed