MAPPING THE GALACTIC BULGE with recent surveys

Manuela Zoccali PUC Chile The question: how did the Milky Way form? bulge is old, massive component.

The clues:

The bulge shape spheroid? triaxial? bar? boxy? peanut?

The bulge age uniformly old? gradient? bar age?

The bulge chemical content

metallicity distribution broad/narrow? closed box? vertical/radial metallicity gradient? element ratios? formation timescale comparison with inner/outer thin/thick disk

BULGE SHAPE First Ideas 1980s – Balloon Infrared maps of the Bulge

asymmetry in the contour map indicate a triaxial spheroid (bar)

1990s – COBE Diffuse InfraRed Background Experiment

boxy bulge (=bar) confirmed

Further evidences of a **Galactic bar**

Observational evidence: stars at positive longitudes are brighter (closer) than those at negative longitudes.

2000s – GLIMPSE I, II, 3D

3.6 4.5 5.8 8 µm

~ 2" resolution

GLIMPSE 3D ~20,500,000 point sources

GLIMPSE I, II, 3D – The Galactic Bar

stars at positive longitudes are brighter (closer) than those at negative longitudes.

Benjamin et al. (2005)

a convergence picture of the MW..... up to 2010

e.g.

Bissantz & Gerhard (2002) Babusiaux & Gilmore (2005) Rattenbury et al. (2007) Lopez Corredoira et al. (2007) Cabrera Lavers et al. (2008)

1:0.35:0.26

-25°

2010s – The X-shaped bulge

Nataf et al. 2010 McWilliam & Zoccali 2010 Saito et al. 2011

Observational evidence: The bulge red clump splits in two, along the minor axis (I=0) and for |b|>5

2010s - The X-shaped bulge

2010s - The X-shaped bulge

2010s - The X-shaped bulge

models by, e.g., Athanassoula (2005) Debattista et al. (2006)

2010s – The X-shaped bulge

Kinematics? De Propris et al. (2011) found no difference in radial velocities of background and foreground arms of the X.

The VISTA Variables in the Via Láctea survey Pls: Minniti, Lucas

> 300 □° bulge: -10° < I < +10° -10° < b < +5°
> 220 □° disk: -65° < I < -10° -2° < b < +2°

The VVV vs 2MASS

First results from VVV : reddening maps

First results from VVV : confirmation of the double clump \rightarrow X-shape

First results from VVV : confirmation of the *inner bar*

First results from VVV : new star cluster candidates

4 globulars Minniti et al. 2011 Moni Bidin et al. 2011

96 open

Borissova et al. 2011

The bulge age

pure old age (~10 Gyr)

Clarkson et al. 2008 14 (*l*,*b*)=(1.25°, -2.65°) 16 [Fe/H] 11**Gy** +0.00010Gy +0.00014Gy -1.00918 F814W 14Gy +0.49111Gy -0.296...... 20 13257 Objects 22 -2.0 mas/yr< μ_l 3.0 mas/yr < 1µn 0.3 mas/yr $\sigma_{\mu} <$ 0.5 1.0 2.0 1.5 F606W-F814W

The bulge age

age uniformly old (~10 Gyr) - no gradient

confirmed radial metallicity gradient

Brown et al. 2011

The bulge age The VVV reaches the turnoff in most fields. BUT: CMD analysis needs synthesis disk decontamination needed (5 yr baseline) good handle on reddening

The bulge age ---> OGLE III + OGLE IV

Szymanski+ 2011

OGLE III + OGLE IV

The bulge helium content

from OGLE III

broad metallicity distribution

radial gradient along the minor axis

Bekki & Tsujimoto (2011) proposes a 2-disk model for the bulge, to explain both vertical gradients and cylindrical rotation

 Error deconvolution gives bimodal MDF (in Baade's Window)

Babusiaux et al. (2010)

The two peaks have different kinematics:

metal-rich : bar-like metal-poor : classical spheroid

two component bulge?

However, Howard et al. (2009), based on BRAVA data, found cylindric rotation: no need for a Galactic bulge

bulge metallicity \rightarrow we need large scale maps

STEP1: photometric metallicity maps

Spect vs phot MDF

bulge metallicity \rightarrow we need large scale maps

STEP2: ESO Large Programme 187.B-0909 PI: Zoccali

140 hr with FLAMES

> 4000 stars on CaT ~ 440 stars at R~22,000

BW calib field (HR21)

bulge metallicity \rightarrow we need large scale maps

A high resolution (R~24,000) near-IR survey of 100,000 Galactic stars (H<12.5)

Conclusions

 The Galactic bulge is very complex.
 it is certainly X-shaped (just a prominent peanut?)
 it has a vertical metallicity gradient (2 component bulge, or just a double bar buckling episode?)

no age gradient (?)

Large scale surveys are needed, with high resolution (spatial, and spectral), to characterize it.

The ELTs will be crucial to study abundances in unevolved stars, and for a detailed chemical characterization of the most metal poor bulge stars (first stars in the Galaxy?)

Constraining the Galactic Bar

stars at positive longitudes are brighter (closer) than those at negative longitudes.

Babusiaux & Gilmore (2005)

Constraining the Galactic Bar from OGLE II

Rattenbury et al. (2007)

UKIDSS – Galactic Plane Survey

Latest Data Release (DR6) 8 (。) 99 6 DEC В 20 2 0 -10 23 30 2¹ 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 RA (hr)

GC

ATLASGAL – The APEX Large Area Survey of the Galaxy at 870 µm

Recent bulge near-IR surveys

the two peaks show different kinematics possible evidence of classical spheroid + bar

► However, Howard et al. (2009) found cylindric rotation: no need for a Galactic bulge