Our WISH: Feeding z>10 Targets to ELTs

Ikuru Iwata (National Astronomical Observatory of Japan)

http://wishmission.org

WISH: Wide-field Imaging Surveyor for High-redshift

- Space Telescope Mission with 1.5m Diameter Aperture
- Wide-Field Near-Infrared Camera (0.9 5 µm)
- (Passively) Cooled Mission with Sun Earth L2 Orbit
- Depth deeper than images with any ground-based telescopes
- Width 100 square degrees in deepest images, >1,000 deg² in shallower surveys

WISH Working Group Members

- PI: Toru Yamada (Tohoku Univ.)
- NAOJ: I. Iwata, S. Tsuneta, T. Kodama, Y. Komiyama, M. Imanishi
- JAXA: H. Matsuhara, T. Wada, H. Sugita, Y. Sato, A. Okamoto
- Tohoku:Y. Katsuno, K. Mawatari, C. Tokoku (UC Riverside)
- Kyoto: K. Ohta, K. Yabe, R. Tsutui
- Tokyo: T. Morokuma, M. Doi, N. Yasuda
- S. Oyabu (Nagoya), N. Kawai (TITech), D. Yonetoku (Kanazawa), A. K. Inoue (Osaka-Sangyo), T. Goto (UH), Y. Ikeda (Photocoding / Kyoto-Sangyo), S. Iwamura (MRJ)

WISH: Scientific Objectives

WISH: Science Objectives

- <u>Unveiling the First Epoch of Galaxy Formation:</u>
 - Detections of Large Sample of First-Generation Galaxies (7<z<15)
 - Explorations of the Cosmic Reionization
- Constraining Dark Energy using Type Ia Supernovae
 - Detection and Light Curve in Rest-frame Near-IR
- Transient Objects such as Gamma-ray Bursts and Luminous Supernovae
- Legacy Near-IR Survey Data with Unprecedented Depth and Area
 - Galaxy Evolution, High-z AGN, Galaxy Stellar Population and more.

Subaru Suprime-Cam

FoV ~30'; Hyper Suprime-Cam (HSC) with 1.5 deg. in 2012

Achievements of Subaru Wide-field Imaging

lye et al. 2006 z=6.964 (Cosmic age= 750 Million years)

Ly α at 0.97 μ m

Achievements of Subaru Wide-field Imaging

Ono et al. 2011 z-dropouts

Obs. Wavelength(μ m)

ELTs Should Make Spectroscopy of 'First Galaxies'. But Who can Provide the Targets?

Ground-based Telescopes Can't Find 'First' Galaxies In Near-IR, the Depth of the Broad-band Images is Determined by the Background Radiation. Thermal Noises Prevent Us to Reach >27 AB Mag.

Cooled Space Telescope is Required.

Depth + Survey Area are the Keys.

Point Source, 10⁴ sec

0.5'' Extended Source, 10^4 sec

Filter5 CRY0=80K MIRROR=100K

WISH: Expected Number of High-z Galaxies

WISH Survey Plan

	Depth [AB mag.]	Area [sq. deg]	Days
Ultra Deep Survey	28.0	100	I,500
Ultra Wide Survey	25.0	I,000	50-100
Extreme Survey	~29.5	~	<100

WISH Broad-band Filter Set

Wavelength (microns)

WISH: Expected Sensitivity

Zodiacal Light = 3x Ecliptic Pole

Selection of High-z Galaxies with Two-Colors

Completeness Estimates

for the case of WISH (Lim. Mag. = 28AB)

Assumption on Evolution of Luminosity Function(I) Empirical Evolution

Assumption on Evolution of Luminosity Function(2) Semi-Analytic Model by Kobayashi et al.

Expected Numbers with WISH Ultra-deep Survey

- 100 sq. deg survey with 5 filters from 1.0 μ m to 3.0 μ m
 - Limiting magnitudes 28AB (point source, 3σ)
 - Total 1,500 days

	z=8-9	z=10-12	z=13-17
Empirical Ev.	169,000	10,420	72
SAM	63,120	4,970	107

WISH can provide large number of targets to ELTs.

Supernova Survey

- Repeat Observations → Find Transient Objects
- Type-Ia SN Search can be made Simultaneously.
- ~2,000 Type Ia SNe (0<z<2-3) are expected
- <u>Rest-frame IR</u> Light Curve: Less Affected by Dust

Why WISH is Indispensable

JWST

- 6.5m Deployable Mirror, Passive Cooling at S-E L2
- Four Science Instruments:
 - MIRI: Mid-IR (5 28µm)
 - NIRSpec
 - NIRCam
 - TFI: Tunable Filter Imager

Number Density of z=12 Galaxies

improving the detection limit with ELTs for extended sources

Field of View

Survey Area

WISH Ultra-Deep Survey 100 deg² 450 Pointings

Why is WISH So Important?

- JWST will discover numerous candidates of very high-z galaxies, but most of them are too faint to be followed-up with JWST itself and ELTs.
- Narrow FoV of NIRCam makes wide-field surveys very expensive.
- JWST + WISH: Complimentary to constrain UVLF Evolution
- Wide-field + Dedicated Surveyor Enables to Find 'Luminous' Galaxies

Euclid, WFIRST, and WISH

	Euclid	WFIRST	WISH
Mirror	I.2m	I.3m	I.5m
FoV	0.5 deg ²	0.3deg ²	0.23deg ²
Visual Imager	RIz	Ļ	
NIR Imager	YJН	0.6-2.0µm	0.9-5.0µm
Lim. Mag.	24AB	25.9AB	28AB
Survey Area	20,000 deg ²	>11,000 deg ²	100 deg ²
Primary Science	Dark Energy	DE, Exoplanet, QSO	First Galaxies

Euclid, WFIRST, and WISH

- Euclid, WFIRST:
 - Precise photometry and Image Quality
 - >I0,000 deg² Survey
- WISH:
 - Optimized for Detection of Luminous High-z Galaxies to Feed ELTs
 - I.5m Diameter Mirror Size is Mandatory
 - Image Depth
 - Diffraction Limit (0.15" at $\sim 1 \,\mu m$)
 - Cover $\lambda \sim 5 \mu m$

<u>WISH is the Best High-z Sample Feeder for ELTs</u> and Right Strategy to Tackle the Enigmatic Early Stage of the Universe.

Make WISH Come True!

- I.5m Space Telescope Optimized for Hunting Galaxies at z>10
 - 28 AB mag., 100 deg²
 - λ up to 5 μ m
- Provides Thousands of Galaxies at z>10 and Hundreds of Galaxies at z>13
- Now in Basic R&D and Preparing a Mission Proposal to JAXA
- Open for International Collaboration

http://wishmission.org