RESOLVED STELLAR POPULATIONS IN THE ELT ERA

L. Greggio, R. Falomo, S. Zaggia, D. Fantinel, M. Uslenghi (INAF, OAPd & IASF-Mi)

Elliptical Galaxy Centaurus A

ESO for the Public

TO DERIVE THE SFH FROM THE CMD OF RESOLVED STELLAR POPULATIONS WE NEED

DEPTH & PHOTOMETRIC ACCURACY

BOTH ARE CRUCIAL

PERSPECTIVES FOR ELTs ARE EXTREMELY INTERESTING BECAUSE OF THEIR LARGE COLLECTING AREAS AND HIGH RESOLUTION

SFH TRACERS

Reasonable exposure: 5 hours integration Reasonable S/N : 5 - 10

THE GALAXIES AROUND US

A SIGNIFICANT SAMPLING OF THE SFH IN THE UNIVERSE REQUIRES THAT WE USE THE LUMINOUS PART OF THE CMD TO DERIVE SFH

METALLICITY DISTRIBUTION IN ELLIPTICAL GALAXIES

Rejkuba et al 2005. A stellar field in the halo of Centaurus A

TWO SPECIFIC SCIENCE CASES (Greggio L., et al., 2011, in prep)

A DISK GALAXY IN THE CENTAURUS GROUP

MOD = 28.3 5 hr EXPOSURE IN I J K DERIVE THE STAR FORMATION HISTORY IN THE CENTRAL PART OF THE DISK

M 83, by W. Keel, KPNO,4m Mayall

AN ELLIPTICAL GALAXY IN THE VIRGO CLUSTER MOD = 31.3 5 hr EXPOSURE IN I J K DETERMINE THE METALLICITY **DISTRIBUTION OF THE STARS** IN A REGION AT 0.5 Re

M 89, from http://thebigphoto.com

STAR FORMATION HISTORY IN DISK GALAXIES

METALLICITY DISTRIBUTION IN ELLIPTICAL GALAXIES

MICADO

Multi-AO Imaging Camera for Deep Observations

Main characteristics

- FoV 53" across, 3mas pixels
- \bullet high throughput (>60%) over the range 0.8-2.5 μm
- sensitivity (5 σ) for point sources m(AB) > 30.5 in 5h
- 4×4 HAWAII 4RG detectors
- 20 filter slots

Illustration of how MICADO will look when mounted underneath the multi-conjugate adaptive optics system MAORY.

http://www.mpe.mpg.de/ir/instruments/micado/micado.php

DISK GALAXY IN THE CENTAURUS GROUP

DISK GALAXY IN THE CENTAURUS GROUP

$$M_{B,GAL} = -20$$

$$R_{e} = 3 \text{ Kpc}$$

$$r/R_{e} = 0$$

$$MOD = 28.3$$

$$\mu_{B} = 21.07$$

$$\mu_{I} = 19.8$$

$$\mu_{J} = 18.9$$

$$\mu_{K} = 18.1$$

$$FoV = 12'' \times 12''$$

$$L_{B} = 17.5 \ 10^{6} \ L_{B,0}$$

$$L_{I} = 15.7 \ 10^{6} \ L_{I,0}$$

$$L_{J} = 23.6 \ 10^{6} \ L_{J,0}$$

$$L_{K} = 35.2 \ 10^{6} \ L_{K,0}$$

$$M_{SF} = 26.6 \ 10^{6} \ M_{0}$$

PHOTOMETRIC ACCURACY

NOTICEABLE ASYMMETRY OF THE ERROR DUE TO CROWDING STARS HAVE GREATER PROBABILITY OF BEING DETECTED BRIGHTER THAN THEY ARE

COMPLETENESS

BLENDING CAUSES MIGRATION OF STARS TOWARDS BRIGHTER BINS AT INTERM. MAGNITUDES WE GET MORE STARS THAN WE PUT IN

OUTPUT vs INPUT CMDs

THE HB / RED CLUMP REGION

WITH THIS CROWDING THE DIFFERENT AGE COMPONENTS ARE BARELY DISTINGUISHED MODELLING OF THE ERRORS IS MANDATORY TO EXTRACT INFORMATION FROM AN OBSERVED CMD WORK IN PROGRESS: QUANTITATIVE ASSESSMENT OF THE FEASIBILITY OF THIS SCIENCE CASE AT A LOWER CROWDING (i.e. FAINTER SB)

ELLIPTICAL GALAXY IN THE VIRGO CLUSTER

$$\begin{split} M_{B,GAL} &= -22 \\ R_e = 10 \text{ Kpc} \\ r/R_e = 0.5 \end{split}$$

$$\begin{split} MOD &= 31.3 \\ \mu_B &= 21.6 \\ \mu_I &= 19.6 \\ \mu_J &= 18.8 \\ \mu_K &= 17.9 \end{split}$$

$$\begin{split} FoV &= 3'' \times 3'' \\ L_B &= 10.6 \ 10^6 \ L_{B,0} \\ L_I &= 17.8 \ 10^6 \ L_{I,0} \\ L_J &= 26.8 \ 10^6 \ L_{J,0} \\ L_K &= 39.7 \ 10^6 \ L_{K,0} \\ M_{SF} &= 75.3 \ 10^6 \ M_0 \end{split}$$

PHOTOMETRIC ACCURACY

IN THE I BAND THE RELATIVE EFFECT OF THE UNDERLYING POPULATION IS VERY PRONOUNCED, BUT THE BKG IS VERY LOW: THE GLOBAL PHOTOMETRIC ACCURACY IS SIMILAR TO THE K BAND

COMPLETENESS

CLUMP STARS ARE PRESENT IN THE INPUT LUMINOSITY FUNCTION, SOME ARE DETECTED BUT ONLY WHEN THEIR LUMINOSITY IS BOOSTED BY BLENDING, ONLY WHEN THEIR MAGNITUDE IS MEASURED WRONG

INPUT AND OUTPUT CMDs

THE COLOR WIDTH OF THE BRIGHT RGB (at J <~ 28) IS WELL REPRODUCED

METALLICITY DISTRIBUTION FROM THE CMD

THE METALLICITY BINS ARE SEPARATED IN COLOR IN SPITE OF THE PHOTOMETRIC ERROR

CONCLUSION

WITH MICADO@E-ELT WE WILL BE ABLE ABLE TO EFFICIENTLY MAP THE RESOLVED STELLAR POPULATIONS OF ENTIRE GIANT GALAXIES IN NEARBY GROUPS AND IN THE NEAREST CLUSTER

WE MAY DERIVE GLOBAL STAR FORMATION HISTORIES AND STUDY STELLAR POPULATION GRADIENTS ALL OVER THE GALAXY AREA WITH A FEW SHOTS

BY ANALYSING A REPRESENTATIVE SAMPLE OF GALAXIES IN VIRGO WE MAY EFFECTIVELY ADDRESS ISSUES LIKE GALAXY FORMATION PROCESS AND THE EFFECT OF GALAXY INTERACTIONS ON STAR FORMATION

