

THE EUROPEAN ELT

- A 40m class adaptive telescope with segmented primary based on a 5-mirror design
- Completed Phase B (detailed design): 2007-2010
 - Construction Review (Sep 2010, passed)
- Currently in Δ Phase B
 - Goal: optimize solutions, reduce cost (1.25 B€) and risks
 - Cost Review (Sep 2011)
- Schedule:
 - Start of construction: 2012
 - First light: 2021
- Cost
 - Telescope + 1st gen instruments: ~ 1050 million Euros
 - Operations (incl new instruments, overheads): ~ 50 M€/year
- Resources
 - Phase B: 2007-2009: 57.2 M€ (including 110 FTEs)
 - ΔφB: 7 M€ + 27 FTEs
 - Supporting activities from FP6 (28.8 M€) & FP7 (6.1 M€)

THE DRIVER

Planets in other stellar systems

- -Imaging and spectroscopy
- -The quest for Earth-like exo-planets

Stellar populations

- In galaxies inaccessible today (e.g. ellipticals in Virgo cluster)
- Across the whole history (i.e. extent) of the Universe

Cosmology

- -The first stars/galaxies
- -Direct measure of deceleration
- Evolution of cosmic parameters
- -Tests of GR around black holes

The unknown

-Open new parameter space

THE SCIENCE CASE: THREE PILLARS

- Contemporary science: Today's clever ideas | the DRM
- Synergy with other facilities:

8-10m telescopes

ALMA

JWST

• Discoveries: Opening parameter space (photon sensitivity, spatial resolution)

∨LT ~50 m²

1um:

25 mas

GMT ~400 m² 9 mas

~600 m²
7 mas

STATUS OF PROGRAMME: PHASE B CONCLUDED, \(\Delta \) IN PROGRESS

- Site selected: Armazones (20 km from Paranal)
 - VLT and E-ELT as a single observatory
- Proposal for Construction passed construction review
- Major contracts (FEEDs) concluded
 - Prototypes and breadboards produced and tested
 - Industrial reviews contracted
- Excellent field results at GTC and VLT (control system)
- Instrumentation Phase A studies concluded
 - First light instruments selected
- Science
 - Design Reference Mission, Design Reference Science Plan.
- Observatory operations plan established
 - Daily activities (maint, calib etc) \rightarrow FTEs \rightarrow costs
 - Observing modes developed (based on VLT paradigm)

STATUS OF PROGRAMME: PHASE B CONCLUDED, △ IN PROGRESS

- Site selected: Armazones (20 km from Paranal)
 - VLT and E-ELT as a single observatory
- Proposal for Construction passed construction review
- Major contracts (FEEDs) concluded
 - Prototypes and breadboards produced and tested
 - Industrial reviews contracted
- Excellent field results at GTC and VLT (control system)
- Instrumentation Phase A studies concluded
 - First light instruments selected
- Science
 - Design Reference Mission, Design Reference Science Plan.
- Observatory operations plan established
 - Daily activities (maint, calib etc) \rightarrow FTEs \rightarrow costs
 - Observing modes developed (based on VLT paradigm)

+ES+ 0 +

E-ELT TLRS

39

- Diameter: ≥42m
 - Alt-Az, F/15 to F/18, fully steerable (0-360,0-90). Operational ZD: 0-70
- Adaptive telescope
 - GLAO correction (≥ 5 arcmin, 90% sky, 80% time)
 - better than 2x FWHM improvement for median seeing conditions
 - Post-focal: SCAO, MCAO, LTAO, ExAO, MOAO, ...
- Science field of view:
 - 10 arcmin unvignetted. Diffraction limited by design
- 5 arcmin unobscured by guide probes
- Wavelength range: 0.3 24 μm
- Transmission @Nasmyth:
 - > 50% at $> 0.35 \mu m$, $> 60 % at <math>> 0.4 \mu m$, > 70% at $0.7 \mu m$, > 80% at $> 1 \mu m$
- Focal stations
 - Two Nasmyth (multiple instruments, including gravity invariant option)
 - At least one Coudé
 - Fixed instrumentation (fast switching: < 10 min same focus, < 20 otherwise)

DESIGN GOALS

- Establish technical & managerial feasibility
 - Based on technologically demonstrated industrial input.
 - Three phases of design of subsystems (competitive tendering, typically more than one supplier)
 - conceptual (BRD)
 - preliminary (BRDv2)
 - detailed (FEED)
- Develop instrumentation plan
 - Engaging the ESO astronomical community for the development of an instrumentation package that matches the telescope and delivers on the science drivers for the project.

DELTA PHASE B

- Explore cost/risk reductions
 - -Most challenging areas:
 - Timely completion of M1; manufacturing M2 unit; wind
 - -Savings on the 42m baseline design
 - Smaller instrument platforms (→ smaller dome)
 - Removal of gravity invariant focus (→ simpler structure)
 - Savings if outer two segment rings removed from M1
 - Only option to reduce total cost substantially
 - Smaller M1 (39.3m)
 - Smaller/shorter dome, main structure
 - Smaller Armazones platform
 - Faster M1:
 - M2 < 4.2m: more suppliers, simpler polishing (1 matrix)</p>
 - further reduction of telescope length and width
 - ⇒ reduce dome volume, exposure to wind
 - → easier to achieve safety under earthquake loading

