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Timeline of Interferometers in the US

* A. Michelson: Lick Obs. 12-inch, 1890; Mt. Wilson 100-inch, 1920-30

o Mark I/11/1l, MIT/Harvard/CfA/USNO/NRL, Mt. Wilson, 1979/1982-84/1986-93

* Infrared Spatial Interferometer (ISI), UC Berkeley, Mt. Wilson, 1987-present

* |IRMA, U. Wyoming, Laramie, 1990-92

* Navy (Prototype) Optical Interferometer (NPOI=> NOI), USNO, Flagstaff AZ, 1994-present

* Infrared Optical Telescope Array (IOTA), CfA/UMass, Mt. Hopkins, AZ, 1994-2006

*  Palomar Testbed Interferometer (PTI), JPL, Mt. Palomar, 1995-2008

* CHARA, Georgia State U./NSF, Mt. Wilson, 2001-present

*  Keck Interferometer, JPL, Mauna Kea, HI, 2001-present

* Large Binocular Telescope Interferometer (LBTI), U. Arizona/JPL/UVa/UMinn, Mt. Graham, AZ, 2011...

* Magdalena Ridge Observatory Interferometer (MROI), NM Tech, Socorro, NM, ~2013...

Note: Years are “first fringes” to “last fringes”, approximate.
Ref.: P. Lawson, Notes on the history of Stellar Interferometry, Appendix A, in Principles of Long Baseline Stellar Interferometry, P. Lawson, Ed., 1999.
Ref.: C. Townes, M. Creech-Eakman, P. Hinz, personal communications; also relevant web sites.



A. Michelson: Mt. Wilson

MEASUREMENT OF THE DIAMETER OF o ORIONIS
WITH THE INTERFEROMETER®

By A. A. MICHELSON axp F. G. PEASE
ABSTRACT

Twenty-foot interferometer for measuring minute angles—Since pencils of rays at
least 1o feet apart must be used to measure the diameters of even the largest stars,
and because the interferometer results obtained with the 1oo-inch reflector were so
encouraging, the construction of a 20-foot interferometer was undertaken. A very
rigid beam made of structural steel was mounted on the end of the Cassegrain cage,
and four 6-inch mirrors were mounted on it so as to reduce the separation of the pencils
to 45 inches and enable them to be brought to accurate coincidence by the telescope.
The methods of making the fine adjustments necessary are described, including the
use of two thin wedges of glass to vary continuously the equivalent air-path of one
pencil. Sharp fringes were obtained with this instrument in August, 1920.

Fic. 1.—Diagram of optical path of interferometer pencils. M, M,, M;, M,,
mirrors; @, roo-inch paraboloid; b, convex mirror; ¢, coudé flat; d, focus.

Ref.: Michelson and Pease, AplJ, 53, 249 (1921)
And http://www.chara.gsu.edu/CHARA/Slides/CHARAoverview.pdf
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Fic. 2.—Diagram of 20-foot interferometer beam. My, M,, M;, M,, mirrors; B, B, 10-inch channels; C, steel plate;
E, E, screws to move outer mirrors; F, motor drive for screws; D, Cassegrain cage.

Assuming that the effective wave-length for a Orionis is X 5750,
its angular diameter from the formula a=1.22 \/b proves to be
0"047; and with a parallax® of o%018 its linear diameter turns
out to be 240X 10°® miles, or slightly less than that of the orbit of
Mars. This value corresponds to a uniformly illuminated disk,
while for one darkened at the limb, this result, as mentioned above,
would be increased by about 17 per cent. The uncertainty of the
measurement of the angular diameter is about 1o per cent.
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A. Michelson: Lick Obs. 12-inch, 1890

MEASUREMENT OF JUPITER'S SATELLITES
BY INTERFERENCE.

IT has long heen known that even in a telescope which is

theoretically perfect, the image of a laminous point is com-
posed of a series of concentric circies with a bright patch of
light at the common centre. This system of circles can easily
D¢ observed by examining any bright star with a telescope pro-
vided with a circular diaphragm which diminishes the effective
aperture. The appearance of the image is shown in Fig, 1, a.
In the case of an object of finite angular magnitude the image
could be constructed by drawing a system of such rings about
every point in the geometrical image. The result for a small
disk (corresponding to the appearance of one of the satellites of
Jupiter as seen with a 12-inch telescope whose effective aperture

F)"j ﬁ

Ref.: A. Michelson, Nature, 45, 160 (1891)

The general theory of these fringes may be found in the
Lhilosophical Magazine for March 1891.  The general cquation
showing the relation between the wzs/6:/ity of the fringes and the
distance between the slits is

Q(P(x) cos L dx ’ + ‘ ¢(x) sin Ax dx g

[[owa] o

With this apparatus the satellites of Jupiter were measured,
with results as given in the following table :—

TAgLE I.
gt L 1. 111 1¥. Seeing.
August 2 ... 15'29 ... 1719 ... 1'88 ... 1'68 ... Poor.
August 3 ... I'29 ... — ... 1'59 ... 1'68 ... Poor.
August 6 ... I°30 ... 1°21 .. 1'69 ... 1°56 ... Poor.
August 7 ... 1730 ... 1'18 ... 1'77 ... 1'7T ... Good.
Mean... 1°29 1'19 173 1'66



Mark I/11/11l, MIT/Harvard/CfA/USNO/NRL,
Mt. Wilson, 1979/1982-84/1986-93

Ref.: http://www.chara.gsu.edu/CHARA/Slides/CHARAoverview.pdf



Mark I/11/111, MIT/Harvard/CfA/USNO/NRL,
Mt. Wilson, 1979/1982-84/1986-93

First fringe measurements with a phase-tracking
stellar interferometer

Michael Shao and David H. Staelin

A prototype twa-telescope stellar interferometer with a 1.5-m base line has been used to track the white-light
fringes, 0.4-0.9 um, from Polaris. Continuous fringe phase and amplitude measurements were made with
~220-photon/4-msec integration time and 1.27-cm? collecting area under 2-arc sec seeing conditions. The
same control algorithm should be able to track fringes from an 8.7-mg star using the light from two 13-cm
(5-in.) telescopes and a 10-msec integration time under 1-arc sec seeing conditions. When tracking, the
servo maintained equal path lengths to 0.1-um rms in the two arms of the interferometer, thus cancelling
the path-length variations caused by earth rotation and atmospheric turbulence. In the future, two-color
phase measurements will make optical aperture synthesis and optical very long-base-line astrometry pos-

sible.
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Ref.: Shao and Staelin, Applied Optics, 19, 1519 (1980)



Mt. Wilson, 1987-present
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Ref.: http://isi.ssl.berkeley.edu/system_overview.htm
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Infrared Spatial Interferometer (ISl), UC Berkeley,
Mt. Wilson, 1987-present

HIGH SPATIAL RESOLUTION 10 MICRON IMAGING OF IRC +10216

Intensity (arbitrary units)

E. E. BLOEMHOF"
Harvard-Smithsonian Center for Astrophysics

W. C. DANCHI! AND C. H. TOWNES!
Department of Physics, University of California, Berkeley
AND
R. A. MCLAREN

Canada-France-Hawaii Telescope Corporation
Received 1987 December 29; accepted 1988 March 18
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FiG. Z—Peconvolved ea_st-wasg pmﬁle_ of IRC +10216. The Richardson-Lucy iterative algorithm was applied to the data of Fig. 1, using the  Boo profile as the
telescope point-spread function; this map is the result of 60 iterations. The central peak has FWHM ~ 0746, indicating that the true width of the central component

is ~0740 when the residual point-spread width of th p

is removed (see discussion in text).

Refs.: Bloemhov, et al, ApJ, 333, 300 (1988); Ravi et al, arXiv:1012.0377v1, (2010)

The many faces of Betelgeuse

Jikram Ravi!, Ed Wishnow!, Sean Lockwood!, Charles Townes!
! Space Sciences Laboratory and Department of Physics, University of
California, Berkeley, CA 94720, USA

Abstract.

The dynamics of the surface and inner atmosphere of the red supergiant star Betel-
geuse are the subject of numerous high angular resolution and spectroscopic studies.
Here, we present three-telescope interferometric data obtained at 11.15 ym wavelength
with the Berkeley Infrared Spatial Interferometer (ISI). that probe the stellar surface
continuum. We find striking variability in the size, effective temperature. and degree
of asymmetry of the star over the years 2006—2009. These results may indicate an
evolving shell of optically thick material close to the stellar photosphere.

|
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Figure 2. Depictions of the best-fit image models for Betelgeuse during each of
the 2006. 2007. 2008 and 2009 epochs. Each figure includes the fit parameters: the
fraction of the total flux from the star. the stellar radius 1n arcseconds, and the fraction
of the total flux from the point. The point sources have been given the uniform disk
sizes that they would have if they represented regions at a temperature of 7200K.
Our upper limit on the point source diameter 1s 20 mas.



Infrared Michelson Array (IRMA), U. Wyoming,
Laramie, 1990-92

THE INFRARED ANGULAR DIAMETER OF ALPHA HERCULIS MEASURED WITH A MICHELSON

INTERFEROMETER
J. A. BENSON AND H. M. Dyck IRMA: A Prototype Infrared Michelson Stellar Interferometer
Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071
P Y Y yorTyoming yoming H. M. DYCK AND J. A. BENSON
S. T. RIDGWAY Department of Physics and Astronomy, P.O. Box 3905, University Station, University of Wyoming, Laramie,
National Optical Astronomy Observatories, Tucson, Arizona 85726 Elmrmic‘:,nﬁ?“:‘iliigzl@nmo_ edu
D.J. DixoN’ S. T. RIDGWAY
Department of Physics, Colorado College, Colorado Springs, Colorado 80946 National Optical Astronomy Observatories, P.O. Box 26732, Tucson, Arizona 85726

Electronic mail: ridgway @ noao.edu

W. L. MAsoN AND R. R. HOWELL Received 1992 October 19; accepted 1993 March 9

Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071
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Refs.: Benson et al, AJ, 102, 2091 (1991); Dyck et al, PASP, 105, 610 (1993)



Navy (Prototype) Optical Interferometer (NPOI-> NOI), USNO,
Flagstaff AZ, 1994-present

Ref.: http://en.wikipedia.org/wiki/Navy_Prototype_Optical_Interferometer
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Navy (Prototype) Optical Interferometer (NPOI-> NOI), USNO,

Flagstaff AZ,

THE NAVY PROTOTYPE OPTICAL INTERFEROMETER

J. T. ARMSTRONG,"> D. MOZURKEWICH, AND L. J RICKARD
Naval Research Laboratory, Code 7210, Washington, DC 20375; tarmstr@fornax.usno.navy.mil, mozurk@rsd.nrl.navy.mil, rickard@rsd.nrl.navy.mil
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AND K. J. JoHNSTON

DC 20392; djh@fornax.usno.navy.mil, jbenson@nofs.navy.mil,

bowers(@sextans.lowell.edu, nme@sextans.lowell edu, cah@ fornax.usno.navy.mil, kjj@astro.usno.navy.mil

D. F. Buscrer,* J. H. CLARK IIL'* AND L. Ha'
Universities Space Research Association, 300 D Street SW, Washington, DC 20024; David Buscher@durham.ac.uk, jhc@fornax.usno.navy.mil,

longha@fornax.usno.navy.mil

L.-C. Ling?

Photonics Industry and Technology Development Association, Fifth Floor, No. 9, Roosevelt Road, Section 2, Taipei, Taiwan;lcl@www.PIDA.org.tw

N. M. WHITE

Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 ; nmw@lowell.edu

AND
R. S. SiMON®

National Radio Astronomy Observatory, Edgemont Road, Charlottesville, VA 22903; rsimon@nrao.edu
Received 1997 June 5 ; accepted 1997 October 30

IMGING SIDERDSTAT STATION

50 meters

FiG. 4—Plan view of the NPOI layout, showing imaging siderostat
locations (filled circles), astrometric siderostat huts, roads, feed pipes, the
optics laboratory, and the control building. The array arms extend beyond
the area of the figure to a distance 250 m from the array center. The Lowell
Observatory telescopes are just beyond the left edge of the figure.

Refs.: Armstrong et al, ApJ, 496, 550 (1998);
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F16. 9—Schematic view of the beam combiner. Currently, the com-
biner works with three beams and combines them pairwise. The input
beams (A, B, C) are split at beamsplitter S1. The reflected beams from S1
are shuffled by mirrors M2 and M3 and combined at S2 with the beams
transmitted by S1 and reflected from M1. The combined beams (A + C,
B + A, and C + B) transmitted by S2 are sent to the spectrometers. At
present, the reflected beams from S2 are not used. The combiner will be
converted to six-beam use by adding mirror M4. Six input beams (A, B, C,
D, E, and F) will be combined into three output beams, each containing
contributions from four inputs (A +C+ D +F, B+ A+ E + D, and
C + B + F + E). The compensator before M4 equalizes the optical paths
in glass for all six input beams.

Tycner et al. AplL, 729, L5 (2011)

1994-present

THE REVISED ORBIT OF THE § Sco SYSTEM

C. TYCNER'. A. AmEs', R. T. Zavara?, C. A. HumMEL?, J. A. BENson?, aND D. J. HUTTER?
Deparumnt of Physics, Central Michigan University, Mount Pleasant, M1 48859, USA
e US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road. Flagstaff, AZ 86001, USA
3 European Southern Obsen atory, Karl-Schwarzschild-Str. 2, 85748 Garc hing bei Miinchen. Germany
Received 2011 Jmmar_\' 17; accepted 2011 January 21; published 201 I February 8
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Figure 2. Top panel: binary orbits based on the parameters from Table 2
based on the best-fit parameters from this study (solid line) and those based on
Tango et al. (dashed line) plotted with the astrometric results (filled circles) of
Table 1. The y ellipses of the astrometric data are generally smaller
than the size of the plotted symbols and were omitted for clarity. The location
of the primary is marked with an “x" Bottom panel: the east—west (squares)
and north—south (crosses) components of the O — C vectors as a function of the
PA. of the secondary.




Infrared Optical Telescope Array (I0OTA), CfA/UMass,

Ref.: http://tdc-www.harvard.edu/IOTA/

Mt. Hopkins, AZ, 1994-2006

Characteristics

Science examples

§ (1995

ongmal IR configuration

InSbh discrete detector
slow scan (0.03 Hz)

K-band

Mira diameters (10%, K=3)
effective temperature of
K.M giants

1995
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2000 3 telescope At aselines, phase
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Infrared Optical Telescope Array (I0OTA), CfA/UMass,
Mt. Hopkins, AZ, 1994-2006

SUB-ASTRONOMICAL UNIT STRUCTURE OF THE NEAR-INFRARED EMISSION FROM AB AURIGAE

R. MILLAN-GABET AND F. P. SCHLOERB
Department of Physics and Astronomy. University of Massachusetts. Amherst. MA 01003: rmillang@comet.phast.umass.edu
W. A. TrauB
Center for Astrophysics. 60 Garden Street. Cambridge. MA 02138
F. MALBET AND J. P. BERGER
Laboratoire d’Astrophysique. Observatoire de Grenoble. Grenoble Cedex 9. F-38041. France

Hot exozodiacal dust resolved around Vega with IOTA/IONIC

D. Defrere!, O. Absil?, J.-C. Augereau®, E. di Folco*®, J.-P. Berger®, V. Coudé du Foresto®, P. Kervella®,
J.-B. Le Bouquin?, J. Lebreton®, R. Millan-Gabet’, J. D. Monnier®, J. Olofsson®, and W. Traub'®

Harvard-Smitk

AND
J. D. BREGMAN
NASA Ames Research Center. Moffet Field. CA 94035
Received 1998 December 15; accepted 1999 January 14; published 1999 January 28
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Ref.: http://tdc-www.harvard.edu/IOTA/



Palomar Testbed Interferometer (PTI), JPL,
Mt. Palomar, 1995-2008

Refs.: http://nexsci.caltech.edu/missions/Palomar/tour2.html

http://en.wikipedia.org/wiki/Palomar Testbed Interferometer




Palomar Testbed Interferometer (PTI), JPL,
Mt. Palomar, 1995-2008

RADII AND EFFECTIVE TEMPERATURES FOR G, K, AND M GIANTS AND SUPERGIANTS

HIGH-PRECISION ORBITAL AND PHYSICAL PARAMETERS OF DOUBLE-LINED SPECTROSCOPIC
G. T. vaN BELLE AND B. F. LANE

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 306-388, Pasadena, CA 91109 BINARY STARS—HD78418, HD123999, HD 160922, HD200077, AND HD210027
R. R. THOMPSON 12 ; 3.4 5 1
Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 Macies KoNACKI' %, MATTHEW W. MUTERSPAUGH™™, SHRINIVAS R. KULKARNI", AND KRZYSZTOF G. HELMINIAK
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) Department of Mathematics and Physics, College of Arts and Sciences, Tennessee State University, Boswell Science Hall, Nashville, TN 37209, USA
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Refs.: Boden et al, AJ, 117, 521 (1999); Konacki et al, ApJ, 719, 1293 (2010)



CHARA, Georgia State U./NSF,
Mt. Wilson, 2001-present
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FIRST RESULTS FROM THE CHARA ARRAY. V. BINARY STAR ASTROMETRY: THE CASE OF 12 PERSEI

CHARA, Georgia State U./NSF,

Mt. Wil

son, 2001-present

Toward Direct Detection of Hot Jupiters with Precision Closure
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Phase: Calibration Studies and First Results from the CHARA
Array

M. Zhao', J. D. Monnier?, X. Che?, E. Pedretti®, N. Thureaun®, G. Schaefer?, T. ten
Brummelaar?, A. Mérand®, S. T. Ridgway®, H. McAlister*, N. Turner?, J. Sturmann?, L.
Sturmann?, P. J. Goldfinger*, C. Farrington?

Telescope Triangle: S1-E1-WA1
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Fig. 3.— Closure phase vs. Azimuth for six calibrators in 2008 August. The first, middle and
the last wavelength channels of MIRC are shown from top to bottom. The data were taken B H 3
with telescope SI-EL-W1. The red line shows the linear fit of closure phase as a function [ fieat sedistrioution over |
. of azimuth. Different colors indicate different targets. The slope of the linear fit and the
£ 2 - reduced y? are also labeled in each panel.
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o b Fig. 9.— Upper limits with 90% confidence levels for the planet/star flux ratios of v And b
in the H band, using the newly calibrated CHARA /MIRC data from multiple nights. The
average upper limit level is 6 x 107%. The best channel at 1.52um shows an upper limit
flux ratio of 4.7x107*. The solid lines show the latest model based on Barman et al. (2005)

o 20 0 (Barman 2011, private communication), assuming a typical radius of 1.3 R; for the planet.

X (mas) 5 . . . . . . .
The blue line shows the model with incident flux uniformly distributed over the dayside
Bsxflffé Zm“]i:f;:;z;‘:\"ﬂi"%&::l{‘;}‘:::r“ﬁﬁ;:ll[(ij;:’,lr“:‘ Hs;;‘g"{:;e::;}":’f of the planet only, while the red line shows the model with full heat redistribution over
The dotted line represents the new orbit fit to the data, and the triangles represent the entire sphere. The dotted line shows the model prediction from Sudarsky et al. (2003),
the new orbit locations on the observing nights. The diamonds represent all the . . ) . . . .
projected separations (21) derived from the seven nights. The error ellipses are assuming a radius of 1 R; with heat redistribution over the dayside only.
plotted for each night’s observation, as described in the text.
Refs.: Bagnulo et al, AJ, 131, 2695 (2006); Zhao et al, arXiv:1109.5183v1 (2011)



Keck Interferometer, JPL,
Mauna Kea, HI, 2001-present
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Large Binocular Telescope Interferometer (LBTI),

U. Arizona/JPL/UVa/UMinn, Mt. Graham, AZ, 2011...
~ -v‘: -

Ref.: http://Ibti.as.arizona.edu/LBTI-Main/Project.html




Magdalena Ridge Observatory Interferometer (MROI),
NM Tech, Socorro, NM, ~2013...

Ref.: http://en.wikipedia.org/wiki/Magdalena Ridge Observatory




A Few Significant Conferences

IAUC 50, High Angular Resolution Stellar Interferometry, U. Maryland, 1978

- Connes, Dainty, Davis, Fried, Hanbury Brown, Koechlin, Low, Mertz,
Ridgway, Roddier, Shao, Tango, Townes, Twiss, Weigelt, Worden, ...

Optical and Infrared Telescopes for the 1990s, KPNO, Tucson, 1980
- Angel, Greenaway, Labeyrie, Meinel, Townes, Vakili, Woolf

Michelson Summer School, Caltech, 1999

- Lawson’s book: McAlister, Boden, Townes, Quirrenbach, TenBrummelaar,,
Colavita, Hutter, Dyck, Monnier, Mozurkewich, Armstrong, Serabyn, Ridgway

Interferometry for Optical Astronomy Il, Waikoloa, Hl, 2002
New Frontiers in Stellar Interferometry, Glasgow, 2004
- 2 SPIE conferences, 5 volumes, 3308 pages of interferometry
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Personal Epiphanies: 6/6

One photon at a time

“Golden Rule”

(Pupil densification, A. Labeyrie, violates rule)

Sums of wavefront patches are the key to understanding
Same reflections for each wavefront patch

Radio # optical, owing to induced emission



