

LMU

Thorsten Ratzka

Ten Years of VLTI – From First Fringes to Core Science ESO Garching, October 24-27, 2011

A typical circumstellar disk

100 pc 200 km 200 m ↓ ↓ ↓ ~0.01" 1 AU 1 cm 10 μm

Dullemond & Monnier, ARAA 48, 2010

A typical circumstellar disk

- the resolution of the interferometer decreases with wavelength
- the emitting region becomes larger due to the temperature gradient
 - ⇒ decreasing visibilities
 - ⇒ direct size estimates

Radiative transfer model T Tau N

star

 $M_* = 2.1 M_{\odot}$ $T_* = 5250 K$ $L_* = 7.3 L_{\odot}$ $R_* = 3.3 R_{\odot}$

envelope $c_1 = 1 \cdot 10^{-5}$ $c_2 = -5.0$

accretion $dM/dt = 3 \cdot 10^{-8} M_{\odot} yr^{-1}$

extinction (foreground) $A_V = 1.5 \text{ mag}$

Radiative transfer model T Tau N

Ratzka et al., A&A, 502, 2009

A growing "zoo" of sources ...

DR Tau	K7 (T $_{*}$ ~4000K, L $_{*}$ ~1.7L $_{\odot}$)	$M_*\sim 0.8 M_{\odot}$	3 Myr		
	m _d ~0.1 M _☉ , r _d ~0.1090 AU, β~0.75, h ₁₀₀ ~15 AU, i~20°, 2.0·10 ⁻⁸ M _☉ /yr				
GW Ori	G0 (T _* ~ 6000K, L _* ~ 40 L _{\odot})	$M_*\sim$ 3.7 M_{\odot}	1 Myr		
	$m_d \sim 1.0 \ M_{\odot}, r_d \sim 0.35360 \ AU, \beta \sim 1.10,$, h ₁₀₀ ~22 AU, i~10°, 2	2.5·10 ^{₋7} M _☉ /yr		
HD 72106B	A0 (T $_{*}$ ~9500K, L $_{*}$ ~28L $_{\odot}$)	M_{*} ~1.8 M_{\odot}	10 Myr		
	m_d ~0.005 M_{\odot} , r_d ~0.5040 AU, β ~1.30	0, h ₁₀₀ ~8 AU, i~60°, r	no accretion		
RU Lup	K8 (T $_{*}$ ~4000K, L $_{*}$ ~1.3L $_{\odot}$)	M_{*} ~0.8 M_{\odot}	1 Myr		
	m _d ~0.1 M _{☉,} r _d ~0.10100 AU, β~0.90, h ₁₀₀ ~20 AU, i~28°, 1·10 ⁻⁸ M _☉ /yr				
HBC 639	K0 (T $_{*}$ ~4800K, L $_{*}$ ~8.5L $_{\odot}$)	M_{*} ~2.0 M_{\odot}	2 Myr		
	$m_d \sim 0.1 \ M_{\odot}, r_d \sim 0.10120 \ AU, \beta \sim 1.00,$, h ₁₀₀ ~10 AU, i~65°, r	no accretion		
S CrA N	K3 (T $_{*}$ ~4400K, L $_{*}$ ~2.3L $_{\odot}$)	M_{*} ~1.5 M_{\odot}	3 Myr		
	m _d ~0.03 M _{☉,} r _d ~0.05120 AU, β~1.10, h ₁₀₀ ~9 AU, i~10°, 4·10 ⁻⁸ M _☉ /yr				

⇒ multiwavelength approach (AMBER)

Schegerer et al., A&A, 502, 2009 Schegerer et al., A&A, in prep.

RY Tau – A case study

RY Tau – A case study

Dust processing around T Tau?

Grain Growth (almost) everywhere

Processed Dust around TW Hya

- ~ 8% of the mass is in submicron sized crystalline dust particles; ~83% of the mass is in sub-micron sized amorphous dust grains
- Comparison of the spectrally dispersed correlated flux with the dust model shows that most of the crystalline material is concentrated within 1 AU from the central star
- The disk of TW Hya is not well mixed

The transitional disk of TW Hya

The transitional disk of TW Hya

Akeson et al., ApJ, 728, 2011

Dauphas & Chaussidon, AREPS, 39, 2011

A non-prototypical prototype

Fitting the binary signal

$$V_{\text{fit}}(u) = V_0(u) \cdot \frac{\sqrt{1 + f^2(u) + 2f(u)\cos\left[2\pi u s(u)\right]}}{1 + f(u)} \quad s(u) = s_0 + s_1 u$$

$$V_0(u) = a_0 + a_1 u \quad f(u) = f_0 + f_1 u + f_2 u^2, \ f(u) < 1$$

Ratzka et al., A&A, 502, 2009

Sketching the T Tau system

Herbst et al., AJ, 134, 359, 2007

Th. Ratzka., A&A 502, 623, 2009 & R. Köhler, A&A 482, 929, 2008

GV Tau – another IRC

- binary separated by 1.2"
- distance of ~ 140-160 pc
- variable on short timescales due to
 - inhomogeneities in the circumstellar material around the southern component?
 - variable accretion of the northern component?
- presence of a circumbinary envelope suggested

	GV Tau N	GV Tau S
r ₁ [AU]	1.0 ± 0.5	1.5 ± 0.5
T ₁ [K]	900 ± 300	900 ± 100
r ₂ [AU]	7 ± 3	10 ± 2
T ₂ [K]	100 ± 50	150 ± 50
i [deg]	10 ± 5	80 ± 10
PA [deg]	50 ± 20	50 ± 20
A_{V} [mag]	19 ± 4	13 ± 4

Roccatagliata et al., A&A, 534, 2011

GV Tau – another IRC

Roccatagliata et al., A&A, 534, 2011

The outburst of V1647 Ori

Mosoni et al., A&A, in prep.

	dM/dt [M _☉ yr ⁻¹]	R _{in,disk} [AU]	R _{in,env} [AU]
quiesc. (2003)	0.3·10 ⁻⁶	0.4	0.4
03/2004	7.0·10 ⁻⁶	0.7	0.7
10/2004	5.5·10 ⁻⁶	0.7	0.7
03/2005	3.0·10 ⁻⁶	0.7	0.7
09/2005	2.5·10 ⁻⁶	0.7	3.0
quiesc. (2006)	0.3·10 ⁻⁶	0.4	0.4

quick dear with GIERS munualy diska /ultdala frup / nov 29 / au 0000 Fuiled to save 16474 counts 193 [168 p~9piz] 22260 6~10 pix 7000 182/72 16000

82) 12" east (SE) -> TO7:46:21 37 83) 12" morth (E) -> TO7: 49:02 84) 12" mosth (NE) -> TOF: 54:04 (85) 12" west (N) -> TO7: 55:46 86) 12" west (NW) -> TO7: 57:06 - 18/20 On source again - T07:58:35 (nominal Dix-posil Shot at 189/166 128 / 163,5 WE SEE THE STAR B IS FIRST LI 30. November 2002 "First Light on n Car"

AD: Dezember 2007 ----MIDI on sideroutable Stor -80 counti 2000 pues. UNT RI: Suponlond. Vinci bubobest 23450 022: Snight a And. plus . Standard acquisition o let BU 25 if well visible = overlage best after reachering-66-2. SNR 34 if visible: gringe search beinglable V 54 par Aral 1 xon acquisitions 3415 5 overlags check beaus A, B 2 righton Anal. -> 5 pixels dates. FIRST FRINGES on LOR! 160 4120 125 Dood voilag => 60. hugg. -1 mg -- 22 dane " S parago-MMMM 2 Con 14 UWE *** 5 - 0.6. FRINGE -16. (1) 11. December 2002 ZCMa "First Fringes on a Ori" Ø 15. December 2002 "UT-Fringes on n Car & Z CMa" 2-6 (A)