Discrete Beam Combiners: exploring the potential of 3D-photonics for interferometry

<u>Stefano Minardi</u>, Nadya Chakrova Felix Dreisow, Stefan Nolte, Thomas Pertsch Institute of Applied Physics - Friedrich Schiller University, Jena - Germany

> Lucas Labadie Ist Physics Faculty - University of Cologne, Cologne - Germany

Point spread function of images improves with # of baselines

Haniff New Ast. Rev. 51, 565 (2007).

Point spread function of images improves with # of baselines

Point spread function of images improves with # of baselines

Haniff New Ast. Rev. 51, 565 (2007).

Exoplanet transits

Simultaneous fringe measurements on many baselines enables imaging of fast astronomical events

Integrated optics

AMBER - VLTI - Petrov et al. A&A 464, I (2007).

Miniaturization
Stability
Scalability

PIONIER - VLTI - Berger et al. SPIE 7734-114 (2010).

2D photonic components

2D photonic components

To which extent 3D photonics could simplify design?

The discrete beam combiner

Minardi, Pertsch, Neuhauser SPIE **7034**-136 (2010). Minardi, Pertsch *Opt. Lett.* **35**, 3009 (2010).

The discrete beam combiner

points

Minardi, Pertsch, Neuhauser SPIE **7034**-136 (2010). Minardi, Pertsch *Opt. Lett.* **35**, 3009 (2010).

²⁰ Minardi, Pertsch, Neuhauser SPIE **7034**-136 (2010). Minardi, Pertsch *Opt. Lett.* **35**, 3009 (2010).

5

10

Sites

15

The discrete beam combiner

Minardi, Pertsch, Neuhauser SPIE **7034**-136 (2010). Minardi, Pertsch *Opt. Lett.* **35**, 3009 (2010).

The discrete beam combiner

Minardi, Pertsch, Neuhauser SPIE **7034**-136 (2010). Minardi, Pertsch *Opt. Lett.* **35**, 3009 (2010).

How does the DBC work

The NxN output intensities I_j of the excited modes are a linear combination of products of the input fields A_k , k=1...N

$$I_{n} = \sum_{j=1}^{N} \sum_{k=1}^{N} \alpha_{n,f(j,k)} \left\langle A_{j} A_{k}^{*} \right\rangle$$

Coefficients of matrix $\alpha_{n,f(j,k)}$ (V2PM) determined by:

Injection points of the fields A_k

Geometry of coupling between waveguides

Optimal matrix: invertible and well conditioned

Minardi, Pertsch Opt. Lett. 35, 3009 (2010).

3x3 DBC performance

3x3 DBC performance

3x3 DBC performance

Could reach performance of existing beam combiners

3x3 Laser-written array

Pertsch, et al. Opt. Lett. 29, 468 (2004).

Laser source: HeNe@633 nm L_{coh}~25 cm

Microscope 10 bit camera

First experimental results: photometry

Calibration procedure adapted from: Lacour et al. SPIE 7013-16 (2008).

First experimental results: photometry

Calibration procedure adapted from: Lacour et al. SPIE 7013-16 (2008).

Expected: $\Phi_1 - \Phi_2 = 7.30 \text{ rad/s}$ $\Phi_1 - \Phi_3 = 5.05 \text{ rad/s}$ $\Phi_2 - \Phi_3 = -2.52 \text{ rad/s}$

Closure phase noise

High-frequency PSD<10 nm²/Hz

Closure phase noise

High-frequency PSD<10 nm²/Hz

A possible application: pupil remapping

Light distributed over minimal number of pixels = high sensitivity On-sky demonstrator under evaluation

Conclusions and perspectives

• First test of a 3D photonic combiner for Astrointerferometry. Optimization of performance in progress.

Conclusions and perspectives

• First test of a 3D photonic combiner for Astrointerferometry. Optimization of performance in progress.

• Simple design potentially scalable to a large number of telescopes.

Conclusions and perspectives

• First test of a 3D photonic combiner for Astrointerferometry. Optimization of performance in progress.

• Simple design potentially scalable to a large number of telescopes.

 Can find applications in intra-pupil interferometric instruments (e.g. FIRST/Dragonfly).

Jones JOSA 55, 261 (1965), Pertsch et al. Opt. Lett. 23, 1701 (1998). Christodoulides et al. Nature 424, 817 (2003).

Jones JOSA 55, 261 (1965), Pertsch et al. Opt. Lett. 23, 1701 (1998). Christodoulides et al. Nature 424, 817 (2003).

Jones JOSA 55, 261 (1965), Pertsch et al. Opt. Lett. 23, 1701 (1998). Christodoulides et al. Nature 424, 817 (2003).

5

10

Sites

15

20

Interference pattern bound to a fixed array of waveguides