

10 Years of VLTI, ESO Garching 24-27 Oct 2011

AfterTwelve/APreS-MIDI model experiment, testing a possible optical interface with the current 2 beam MIDI instrument

AfterTwelve/APreS-MIDI model experiment, testing a possible optical interface with the current 2 beam MIDI instrument

Young star flared disk

Red giant atmosphere

Clumpy dust torus of AGN at different inclinations

Red giant envelope with bright rim and dust clumps

Present MIDI Instrument

MATISSE Instrument

Objectives : to better understand the inner regions of dust disks and the conditions under which the planets form and evolve.

Planet forming region

Earth	-	7 mas
Jupiter	-	36 mas
Neptune	-	215 mas

Instrument	T Tauri stars	Herbig stars	Debris disks	Massive YSOs
AMBER	0	13	2	1
MIDI	6	10	1	3
Keck-I	14	6	0	0

Low set of observed T Tauri sources versus Herbig type sources (From MATISSE Science Analysis Report, Issue 1).

[µm]

bilities be right: Mi 9–10 μ m e spatiall deled visi

From Leinert et al. 2004

evacuated central cavity (Dullemond et al 2001, here plotted for two different dust

evacuated central cavity (Dullemond et al 2001, here plotted for two different dust

Highlights: L& M band ~ 2.9 – 5.0 mm

- New dust species: e.g., H_2O ice broad band feature (2.8 4.0 μ m)
- Polycyclic Aromatic Hydrocarbons (PAHs): 3.3 μm, 3.4 μm;
- Nano-diamonds: $3.52 \ \mu m$
- Transition from dust scattering to dust thermal reemission as the source of spatially extended emission
- CO fundamental transition series (4.6 –4.78 μ m)
- CO ice features $4.6 4.7 \ \mu m$
- Recombination lines, e.g., Pf β at 4.65 μ m

N Band ~ 7.5 – 13.5 μm

• Spectral features to be investigated with MATISSE will be very similar to those studied with MIDI : Silicates, Olivine, Forsterite, SiC.

van Boekel et al. 2004, Nature, 432, 479

Example of dust mineralogy effects

van Boekel et al. 2004, Nature, 432, 479

Different scenarii :

- Disk inclination ($\Delta i = 10^\circ$)
- Inner rim ($\Delta r_{in} = 1 \text{ UA}$)
- Size of dust grains (Δa_{grain} = 1 μ m)
- Dust composition : silicate + crystalline material

Example of dust mineralogy effects

Different scenarii :

- Disk inclination ($\Delta i = 10^\circ$)
- Inner rim ($\Delta r_{in} = 1 \text{ UA}$)
- Size of dust grains (Δa_{grain} = 1 μ m)
- Dust composition : silicate + crystalline material

Performances answering the science objectives

VLTI characteristics, performances, contraints & environnement

- ✓ Best concept in term of performance (SNR on coherent flux)
 - Co-axial or multi-axial / Pairwise or global combination
 - Taking into account the instrument feasibility
- ✓ Strategy to reduce the effect of the thermal background
 - Use of OPD modulation, spatial filtering, photometric channel, chopping
- \checkmark Strategy to optimize the calibrated visibility accuracy
 - Spatial filtering without fiber
 - Contrast stability vs flux loss taking into account VLTI AO performances
- ✓ Strategy to optimize the phase accuracy
 - Beam commutation
- ✓ Study of the parasitic light effects
 - Effect of parasitic fringes ("Fizeau", "Perot-Fabry", "Young") on instrumental performance

> Sensitivity:

Limiting	L b	and	N band			
Magnitude	Tech. Spec.	Performance	Tech. Spec.	Perf.	Perf. (pol)	
UT	6.6 (0.65Jy)	8.35 (0.13Jy)	2.7 (3Jy)	4.4 (0.65Jy)	4 (0.9Jy)	
AT	4.1 (6.5Jy)	5.85 (1.3Jy)	0.25 (45Jy)	1.45 (9.7Jy)	1.05 (14Jy)	

➤ Calibrated visibility: Tech. Spec. ≤ 7.5% (goal ≤ 2.5%) with UTs, 20 Jy

Visibility accuracy	Lb	and	N band		
With UTs (in %)	20 Jy	Lim. Mag.	20 Jy	Lim. Mag.	
Fringe Tracking	1.5	2	0.8	10.0	
Blind mode	1.6	2.4	2.7	10.4	

➤ Closure Phase: Tech. Spec. ≤ 40mrad (goal ≤ 1mrad) with UTs, 20 Jy

Closure phase	L b	and	N band		
With UTs (in mrad)	20 Jy	Lim. Mag.	20 Jy	Lim. Mag.	
	12	13	4	30	

ESO participants : A. Glindemann, J.-C. Gonzales, G. van Belle, A. Richichi, G. Finger, D. Ives, I. Percheron, R. Palsa, E. Pozna, J.L. Lizon, S. Ménardi, P. Haguenhauer, P. Gitton, F. Gonté, G. Rupprecht, G. Avila, P. Jolley, P. Bourget, S. Morel, F. Delplancke ... A. Moorwood

MATISSE Consortium : B. Lopez¹, P. Antonelli¹, S. Wolf⁶, W. Jaffe³, R. Petrov¹, S. Lagarde¹, P. Berio¹, R. Navarro⁴, F. Bettonvil⁴, U. Graser², U. Beckman⁵, G. Weigelt⁵, F. Vakili¹, T. Henning², J.C. Augereau⁹, C. Bailet¹, J. Behrend⁵, Y. Bresson¹, O. Chesneau¹, J.M. Clausse¹, C. Connot⁵, K. Demyk⁶, W.C. Danchi⁷, M. Dugué¹, Y. Fantei¹, E. Elswijk⁴, H. Hanenburg⁴, K.H. Hofmann⁵, M. Heininger⁵, R. t. Horst⁴, J. Hron⁷, J. Kragt⁴, J. Tromp⁴, T. Agocs⁴, G. Kroes⁴, W. Laun², Ch. Leinert², A. Matter¹, Ph. Mathias, K. Meisenheimer², J.L. Menut⁵, F. Millour¹, U. Neumann², E. Nussbaum⁵, L. Mosoni, S. Ottogalli¹, T. Ratzka, S. Robbe-Dubois¹, F. Rigal⁴, A. Roussel¹, D. Schertl⁵, B. Stecklum, E. Thiebaut, M. Vannier¹, L. Venema⁴, K. Wagner², M. Meillen², T. Kroener², N. Mauclert¹, Paul Girard¹, G. M. Lagarde¹.

- 1- Observatoire de la Côte d'Azur, Nice, France,
- 2- Max Planck Institut für Astronomie, Heidelberg, Germany,
- 3- Leiden Observatory, the Netherlands,
- 4-ASTRON, Dwingeloo, the Netherlands,
- 5- Max Planck Institut für Radioastronomie, Bonn, Germany,
- 6- ITAP, Kiel University, Germany,
- 7- Vienna University Austria.

- Fringe Tracker and record of the residuals
 - Full L&M medium and high spectral resolution reading
 - Sensitivity
 - Accuracy
- Tip Tilt correction, Pupil monitoring, residuals
 - Baseline lengths & u coverage
 - Sensitivity
 - Accuracy
- Adaptive Optics on ATs
 - Fringe Tracker
 - Sensitivity
- Hybrid mode coupling ATs-UTs
 - Sensitivity & uv coverage
- Simultaneous observations MATISSE-GRAVITY

- Progress Meeting coupled an informal review about the warm optics: June 2011
- O & C FDR: September 2011
- Instrument FDR: March 2012
- Provisional acceptance of the sub-systems
- Instrument laboratory test phase: July 2014 May 2015
- PAE: June 2015
- PAC: March 2017

Science Programs and their key Issues

Primary Science Cases

Star and Planet Formation

M

- 1. Low-mass Star and Planet Formation
 - (a) Complex disk structures on large (\sim 100 AU) and small scale (\sim 1 AU); Transitional objects: Status of inner disk clearing
 - (b) Mineralogy of proto-planetary disks; Evidence for dust grain growth and sedimentation
 - (c) Characteristic structures in disks: Evidence for the presence of giant proto-planets
 - (d) The binary mode of star formation: Circumbinary and circumstellar disks; Disk alignment and early evolution of binary systems
 - (e) Nature of outbursting YSOs: Structure of young accretion disks
- 2. Late stage of planet formation Debris disks:
 - (a) The outcome of planetesimal collisions and exo-comets evaporation: Dust grain properties and disk geometry
 - (b) Complex spatial disk structure direct indicators for the presence of planets
 - (c) Characterization of Darwin/TPF targets
- 3. Massive Star Formation
 - (a) Spatial distribution of the gas (carbon monoxide and hydrogen) and dust (silicates/graphite and CO ice) in the typically complex and distant high-mass star-forming regions
 - (b) Link between low and high-mass star formation? Search and characterization of accretion disks around young massive (proto)stars

Active Galactic Nuclei

Hydro-dynamical models of the central gas and dust distribution in AGN show a dense inner disk (supported by angular momentum) and an outer filamentary structure – the torus.

- 1. Can we establish the existence of the dense inner disks ? Are the disks present in both Seyfert 1 and 2 galaxies ?
- 2. Can we find direct evidence that tori are clumpy or filamentary structures?

Outflow phenomena (supersonic winds, jets) are connected with most kinds of AGN activity

- 3. To which extend is the torus structure regulated by the outflows ?
- 4. What fraction of the dust emission from within the inner few parsecs of an AGN is emitted by the torus and what by dust entrained in the outflows?

- Full L&M medium and high spectral resolution reading
- Sensitivity
- Accuracy

In the 'MATISSE Performance Analysis Report'

In the 'MATISSE Performance Analysis Report'

In 'Complement to the Science Case document' of Phase A A list of AGNs with reference stars

Name	type	RA	DEC	K _{AGNcore}	L _{AGNcore}	H _{star}	K _{star}	R _{star}	SEP
MCT0146-2813	Sy1	01 48 22.2	-27 58 23	12.3	10.5	10.6	10.5	11.6	19.5
NGC676	Sy2	01 48 57.3	+05 54 21	10.7	8.2	8.6	8.6	10.0	5.1
NGC1204	Sy2	03 04 40.0	-12 20 29	11.4	8.9	9.2	9.1	10.0	12.8
LEDA17016	Sy1	05 16 21.1	-10 33 41	11.2	9.4	10.5	10.3	12.2	12.2
2E2060	Sy1	08 52 15.1	+07 53 37	12.6	10.8	9.3	9.2	10.8	19.6
RBS 999	Sy1	11 34 22.5	+04 11 28	12.9	11.1	9.0	8.8	10.5	22.2
Cen A	Sy2	13 25 27.7	-43 01 09	8.8	6.3	9.4	9.2	11.0	44.0
NGC 5363	Lin	13 56 07.2	+05 15 17	9.7	7.9	10.6	10.3	?	6.2
LEDA 170317	Sy2	13 59 00.3	-20 02 57	12.3	9.8	8.3	8.2	8.0	18.8
MCG+03-40-009	Sy2	15 35 52.6	+14 31 04	12.9	10.4	9.8	9.6	12.5	24.0
ESO 137-34	Sy2	16 35 14.2	-58 04 41	11.4	8.9	7.7	7.3	9.2	13.9
IGR J18027-1455	Sy1	18 02 47.3	-14 54 54	10.9	9.1	9.1	8.6	15.2	15.3
ESO 339-11	Sy2	19 57 37.6	-37 56 05	11.6	9.1	10.5	10.3	10.8	25.0
QSO B2032+107	QSO	20 35 22.0	+10 56 06	12.2	10.4	10.5	10.4	11.8	25.1
LEDA 65714	Sy1	20 55 22.3	+02 21 17	12.5	10.7	9.7	9.6	12.7	26.4
1H 2107-097	Sy1	21 09 09.9	-09 40 15	10.9	9.1	9.0	8.8	12.1	15.4
LEDA 2831185	QSO	22 03 26.9	+17 25 48	12.4	10.6	10.1	10.0	12.2	13.7
MCG+01-57-007	Sy1	22 32 30.8	+08 12 27	11.8	10.0	9.5	9.3	10.7	9.8
ESO 535-1	Sy2	22 59 01.4	-25 31 42	12.4	9.9	10.6	10.4	11.9	24.5

K = 10 off-axis FT

K = 12 on axis FT

- Full L&M medium and high spectral resolution reading
- Sensitivity
- Accuracy
- Doubling the MATISSE spectral resolution : example, R_{max} in L could go from 100 to 1500
- Simultaneous observations MATISSE + GRAVITY
- Possible implementation of a Fourier Transform Spectrometer for high spectral resolution > 50 000

In relation with the Fringe Tracking :

o Number of telescopes: 4 telescopes

o Sensitivity: K>10 (Goal: K>12, extragalatic program)

o Tracking accuracy: 180nm RMS (over 1mn)

• Chopping compatibility: Current values in ICD OK (30ms for fringe reacquisition and 10ms for closing FT loop)

o Sensing processing: FT signal part of MATISSE data for offline processing

- Agreement
- Technical Specifications
- Memorandum of Understanding
- Statement of Work
- Management Plan

INSU, Jean-Marie Hameury, NOVA, Wilfried Boland, MPIA, Thomas Henning, MPIfR, Gerd Weigelt, OCA, Farrokh Vakili.

Les requis astrophysiques

en considérant différents sujets et approches

	Coherent Flux Sensitivity	Visibility Accuracy	Closure Phase Accuracy	Differential Phase Accuracy	Differential Visibility Accuracy
Protoplanetary disks (number of available sources)	$ \begin{array}{l} N & \sim 1 \ \text{Jy UTs} \\ & \sim 20 \ \text{Jy ATs} \\ L & \sim 0.2 \ \text{Jy UTs} \\ & \sim 4 \ \text{Jy ATs} \end{array} $	_	_	_	_
Protoplanetary disks (signatures in visibility and closure phase)		Scenarios 1-2-3-4 : 1 - 10 % in N Scenarios 5-6 : 1 - 5 % in N	Scenarios 1-2-3-4 : 0.05-1 radian in N Scenarios 5-6 : 0.02 – 0.1 radian in	_	_
Protoplanetary disks (model fitting approach)	-	Foreseen for the second version of this document	Foreseen for the second version of this document	_	_
Protoplanetary disk (image reconstruction approach)	-	10 % best with 2 %	0.2 radian best with 0.01 radian	_	_
AGN	N ~05 Jy UTs L ~0.1Jy UTs	10%	-	-	-
Asteroids	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	_	_	_	_
Extrasolar planets	N \sim a few Jy down to 1 Jy L \sim a few Jy up to 10 Jy	_	$\sim 5 \ 10^{-4}$ radian in N $\sim 10^{-4}$ radian in L	$\sim 5 \ 10^{-4}$ radian in N $\sim 10^{-4}$ radian in L	_

From Table 4 of the Science Analysis Report.

MATISSE atteint ses objectifs scientifiques

			1	
Coherent Flux	Visibility	Closure Phase	Differential Phase	Differential Visibility
Sensitivity	Accuracy	Accuracy	Accuracy	Accuracy
he requirements d	efined here satisfi	ed by the Performance	e Analysis Report [R	D2] calculations :
Yes	_	_	_	_
	Yes	Yes		
			_	—
	Not studied yet	Not studied yet		
_	-		_	
	Yes	Yes		
_	100		_	—
Var	Vas			
res	1 05	-	-	-
Y es in N	-	-	-	_
No in L				
Yes in L and	_	Challenging as an	Challenging as an	_
N		exploratory goal	exploratory goal	
	Coherent Flux Sensitivity he requirements d Yes - - - Yes Yes in N No in L Yes in L and N	Coherent Flux Sensitivity Visibility Accuracy he requirements defined here satisfied Yes - Yes - Yes - Not studied yet Yes Yes in N No in L Yes in L and N	Coherent Flux Sensitivity Visibility Accuracy Closure Phase Accuracy he requirements defined here satisfied by the Performance Yes Yes - - - Yes Yes Yes Yes Yes Yes in N - - No in L - Challenging as an exploratory goal	Coherent Flux Sensitivity Visibility Accuracy Closure Phase Accuracy Differential Phase Accuracy he requirements defined here satisfied by the Performance Analysis Report [R Yes

From Table 5 of the Science Analysis Report.

Number of sources per object class

Science Case	L&M band	N band
	ATs/UTs	ATs/UTs
Star and Planet Formation		
- Low-mass Stars and Planet Formation	$\sim\!100$ / $>\!\!100$ a	\sim 100 / $>$ 100 b
- Young low-mass Binary Stars	>25 / >60	>15/>30
- FU Orionis Stars	6 / 9	5 / 13
- Debris Disks	250 / 320	70 / 180
- Massive Star Formation	~ 50 c $$ / ~ 50	~ 50 c $/\sim 60$
Active Galactic Nuclei	0 / 47	0 / 17
Evolved Stars		
- Low-mass stars ^d : a) O	\sim 30 / 30	\sim 90 / 90
b) C	$\sim 6 \ / \ 6$	\sim 15 / 15
c) S	\sim 2 / 2	\sim 5 / 5
- R CrB	3 / 10	3 / 10
- PNs	3 / 10	3 / 10
- Cepheids	6 / 6	6 / 6
- High-mass stars: a) B[e] stars	15 / 7	15 / 3
b) WR stars	10 / 25	10 / 15
c) LBV stars	3 / 5	1 / 5
d) Be stars	30 / 30	0 / 0
Solar System Minor Bodies	$0/\sim 30$	\sim 10 ³ / \sim 6 $ imes$ 10 ³
Extrasolar Planets	3 / 25	0 / 1
Galactic Center	0 / 1	0 / 1