High angular resolution science with the E-ELT

Markus Kissler-Patig

E-ELT Project Scientist

E-ELT Overview and Status

The European Extremely Large Telescope

- Most ambitious optical telescope ever built
- Primary mirror of ~40m diameter
- Working at optical / infrared wavelength
- Adaptive optics with 6 lasers diffraction limited
- Status: Handed in Construction Proposal after the detailed design phase (B)
- Start construction 2012 first light in 2021

Monday 20 February 12

Monday 20 February 12

Main structure: Alt-Az mount, 2800 t

Dome: 80m x 90m \emptyset , fully air conditioned

Three mirror anastigmat + two flat mirrors (M4, M5) Strehl > 99% out to 3' radius for λ > 360nm

Three mirror anastigmat + two flat mirrors (M4, M5) Strehl > 99% out to 3' radius for λ > 360nm

Three mirror anastigmat + two flat mi Strehl > 99% out to 3' radius for $\lambda > 30$

Strehl > 99% out to 3' radius for λ > 3(

Monday 20 February 12

Strehl > 99% out to 3' radius for λ > 3(

Strehl > 99% out to 3' radius for λ > 3(

M4: flat, 2.4-m diameter

- Zerodur 2mm thin shell
- 5000 contact-less actuators
- 198 removable actuator bricks
- Fitting error 145nm rms @ 0.85" seeing
- 10 tons, 8.4 kW

M1: F/0.93, 39-m diameter

- 798 Segments 1.44-m average size (corner to corner)
- 6 sectors of 133 segments
 + 1 spare set 931 total
- Each segment controlled in Piston / Tip / Tilt position
- Each segment controlled in shape

E-ELT instruments at the diffraction limit

Eight instruments and two adaptive optics modules were studied in phase A (2007-2010)

All instruments working in the near- or thermal infrared intend to exploit the diffraction limit of the telescope

> AT baseline ~200m UT baseline ~130m

Eight instruments and two adaptive optics modules were studied in phase A (2007-2010)

All instruments working in the near- or thermal infrared intend to exploit the diffraction limit of the telescope

> AT baseline ~200m UT baseline ~130m

Eight instruments and two adaptive optics modules were studied in phase A (2007-2010)

All instruments working in the near- or thermal infrared intend to exploit the diffraction limit of the telescope

> AT baseline ~200m UT baseline ~130m

Implementation of the instrument plan

year	ELT-IFU	ELT-CAM	ELT-MIR	ELT-4	ELT-5	ELT-6	ELT-PCS
				HIRES)	HIRES		
2012	Decide science requirements, AO architecture.		VISIR start on- sky	Develop science requirements for MOS/HIRES			Call for proposals for ETD
2013			TRL Review	Call for proposals for MOS/HIRES			
2014							
2015				Selection ELT-MOS/HIRES		Call for proposals	
2016							
2017							TRL check
2018							TRL check
2019						Selection	TRL check
2020							TRL check
2021 Tel technical 1 st light							TRL check
2022 Inst Comm starts							
	Pre-studies taking the form of Phase-A or ∆-Phase-A work and/or ESO-funded enabling technology development (ETD)						
	Decision point						
	Development of Technical Specifications, Statement of Work, Agreement, Instrument Start.						

High Angular Resolution Science Cases

Long term astrometric precision of 50-100 µarcsec

Galactic Centre

Proper motions

10 µarcsec/year

at 10kpc: 0.5 km/s

at 50kpc: 2.5 km/s

Photometry and spectroscopy of individual star beyond the Local Group

Simulations taken from the Design Reference Mission report: <u>http://www.eso.org/sci/facilities/eelt/science/drm/drm_report.pdf</u>

mid-IR: combining highest spectral with highest spatial resolution

Simulation of a METIS image cube of the CO P(8) line from SR 21 for an assumed distance of 125 pc (Pontoppidan et al. 2009).

Resolve proto-planetary disks to a few AU at 150 pc distance, with a spectral resolution of 100.000

Contrast: reaching Earth-mass planets in habitable zones

Simulation for the E-ELT project by S.Gladysz, analysed by J.Ascenso

For stars at < 10 pc, contrasts allowing to detect Earth-like planets can be reached, also inside the respective habitable zones

Conclusions

Monday 20 February 12

The End

Monday 20 February 12