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Planet populations   Varying the central star’s mass   
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Low (high) mass stars lead to the formation of lower (higher) mass 
planets, in more (less) compact planetary systems.

Alibert et al. 2010
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Initial mass function

M. Mayor et al.: The HARPS search for southern extra-solar planets
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Fig. 10. Observed mass histogram for the planets in the combined sam-
ple. Before any bias correction, we can already notice the importance
of the sub-population of low-mass planets. We also remark a gap in the
histogram between planets with masses above and below ⇥30 M�.
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Fig. 11. Same as Fig. 10 but for planets with periods smaller than
100 days. We see the dominance of low-mass planet with short orbital
periods.

our bias estimate and correction. We conclude that this feature
must be real.
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Fig. 12. Histograms of planetary masses, comparing the observed his-
togram (black line) and the equivalent histogram after correction for the
detection bias (red line).
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Fig. 13. Observed period distribution for low-mass planets (m2 sin i <
30 M�)

4.5. Orbital eccentricities of Super-Earth and Neptune-type
planets

Figure 15 displays the orbital eccentricities as a function of the
planetary mass. We can remark the very large scatter of orbital
eccentricities measured for gaseous giant planets, some of them
having eccentricities as large as 0.93. Such very large eccentric-
ities are not observed for planets with masses smaller than about
30 M� for which the most extrem values are limited around 0.45.
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M. Mayor et al.: The HARPS search for southern extra-solar planets
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togram (black line) and the equivalent histogram after correction for the
detection bias (red line).
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Fig. 13. Observed period distribution for low-mass planets (m2 sin i <
30 M�)

4.5. Orbital eccentricities of Super-Earth and Neptune-type
planets

Figure 15 displays the orbital eccentricities as a function of the
planetary mass. We can remark the very large scatter of orbital
eccentricities measured for gaseous giant planets, some of them
having eccentricities as large as 0.93. Such very large eccentric-
ities are not observed for planets with masses smaller than about
30 M� for which the most extrem values are limited around 0.45.
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Fig. 4.— Planet occurrence as a function of planet radius and orbital period for P < 50 days. Planet occurrence spans more than three
orders of magnitude and increases substantially for longer orbital periods and smaller planet radii. Planets detected by Kepler having
SNR > 10 are shown as black dots. The phase space is divided into a grid of logarithmically spaced cells within which planet occurrence
is computed. Only stars in the “solar subset” (see selection criteria in Table 1) were used to compute occurrence. Cell color indicates
planet occurrence with the color scale on the top in two sets of units, occurrence per cell and occurrence per logarithmic area unit. White
cells contain no detected planets. Planet occurrence measurements are incomplete and likely contain systematic errors in the hatched
region (Rp < 2 R⊕). Annotations in white text within each cell list occurrence statistics: upper left—the number of detected planets
with SNR > 10, npl,cell, and in parentheses the number of augmented planets correcting for non-transiting geometries, npl,aug,cell; lower
left—the number of stars surveyed by Kepler around which a hypothetical transiting planet with Rp and P values from the middle of the
cell could be detected with SNR > 10; lower right—fcell, planet occurrence, corrected for geometry and detection incompleteness; upper
right—d2f/d log10 P/d log10 Rp, planet occurrence per logarithmic area unit (d log10 P d log10 Rp = 28.5 grid cells).
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Lissauer et al. (2011b) noted that the multi-planet sys-
tems observed by Kepler have relatively low mutual incli-
nations (typically a few degrees) suggesting a significant
correlation of inclinations. Converting our measurements
of the mean number of planets per star to the fraction of
stars having at least one planet requires an understand-
ing of the underlying multiplicity and inclination distri-
butions. Such an analysis is attempted by Lissauer et al.
(2011b), but is beyond the scope of this paper.
It is worth identifying additional sources of error and

simplifying assumptions in our methods. The largest
source of error stems directly from 35% rms uncertainty
in R! from the KIC, which propagates directly to 35%
uncertainty in Rp. We assumed a central transit over
the full stellar diameter in equation (2). For randomly
distributed transiting orientations, the average duration
is reduced to π/4 times the duration of a central transit.
Thus, this correction reduces our SNR in equation (1) by
a factor of

√

π/4, i.e. a true signal-to-noise ratio thresh-
old of 8.8 instead of 10.0. This is still a very conservative
detection threshold. Additionally, our method does not
account for the small fraction of transits that are graz-
ing and have reduced significance. We assumed perfect√
t scaling for σCDPP values computed for 3 hr intervals.

This may underestimate σCDPP for a 6 hr interval (ap-
proximately the duration of a P = 50 day transit) by
∼10%. These are minor corrections and affect the nu-
merator and denominator of equation (2) nearly equally.

3.1. Occurrence as a Function of Planet Radius

Planet occurrence varies by three orders of magnitude
in the radius-period plane (Figure 4). To isolate the de-
pendence on these parameters, we first considered planet
occurrence as a function of planet radius, marginalizing
over all planets with P < 50 days. We computed oc-
currence using equation (2) for cells with the ranges of
radii in Figure 4 but for all periods less than 50 days.
This is equivalent to summing the occurrence values in
Figure 4 along rows of cells to obtain the occurrence for
all planets in a radius interval with P < 50 days. The
resulting distribution of planet radii (Figure 5) increases
substantially with decreasing Rp.
We modeled this distribution of planet occurrence with

planet radius as a power law of the form

df(R)

d logR
= kRR

α. (4)

Here df(R)/d logR is the mean number of planets hav-
ing P < 50 days per star in a log10 radius interval cen-
tered on R (in R⊕), kR is a normalization constant, and
α is the power law exponent. To estimate these param-
eters, we used measurements from the 2–22.7 R⊕ bins
because of incompleteness at smaller radii and a lack of
planets at larger radii. We fit equation (4) using a max-
imum likelihood method (Johnson et al. 2010). Each ra-
dius interval contains an estimate of the planet fraction,
Fi = df(Ri)/d logR, based on a number of planet de-
tections made from among an effective number of target
stars, such that the probability of Fi is given by the bi-
nomial distribution

p(Fi|npl, nnd) = F
npl

i (1 − Fi)
nnd (5)

where npl is the number of planets detected in a spec-
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Fig. 5.— Planet occurrence as a function of planet radius for
planets with P < 50 days (black filled circles and histogram). The
top and bottom panels show the same planet occurrence measure-
ments on logarithmic and linear scales. Only GK stars consistent
with the selection criteria in Table 1 were used to compute occur-
rence. These measurements are the sum of occurrence values along
rows in Figure 4. Estimates of planet occurrence are incomplete
in the hatched region (Rp < 2 R⊕). Error bars indicate statistical
uncertainties and do not include systematic effects, which are par-
ticularly important for Rp < 2 R⊕. No planets with radii of 22.6–
32 R⊕ were detected (see top row of cells in Figure 4). A power law
fit to occurrence measurements for Rp = 2–22.6 R⊕ (red filled cir-
cles and dashed line) demonstrates that close-in planet occurrence
increases substantially with decreasing planet radius.

ified radius interval (marginalized over period, nnd ≡
npl/fcell − npl is the effective number of non-detections
per radius interval, and fcell is the estimate of planet oc-
currence over the marginalized radius interval obtained
from equation (2). The planet fraction varies as a func-
tion of the mean planet radius Rp,i in each bin, and the
best-fitting parameters can be obtained by maximizing
the probability of all bins using the model in equation
(4):

L =
nbin
∏

i=1

p(F (Rp,i)). (6)

In practice the likelihood becomes vanishingly small away
from the best-fitting parameters, so we evaluate the log-
arithm of the likelihood

lnL=
nbin
∑

i=1

ln p(F (Rp,i)) (7)

Distribution of radii

KEPLER: Occurence and radii

IncompletenessHoward et al. 2011

Planet occurence
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Radii statistics

Kepler: 33%
Model: 32%

Planet formation model 1

T=5x109 yrs
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Statistical comparisons between observations and models allow to 
pinpoint the importance of certain physical processes...

Radii statistics

Kepler: 33%
Model: 32%

Planet formation model 2

T=5x109 yrs

Planet formation model 1

T=5x109 yrs

“non-isothermal” 
type I migration

“isothermal” 
type I migration
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Planet Formation
in presence of gas

in absence of gas
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Disk lifetimes
The distribution of disk lifetimes can be obtained by determining 
the fraction of stars in nearby young stellar clusters that still show 
the presence of a disk through IR excess.

Mamajek (2009)

The lifetime of proto-
planetary disks is of order a 

few million years

This is the time available to 
form gaseous planets and to 

move them around...
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Planet-disk interactions
Planet - disk interactions

Simulations by P. Armitagesurface density

Note:
- planet generates non-axisymmetric potential
- this potential generates density waves
- density waves result in torques on planet
- torques change angular momentum

Small mass planets: No gap
➝ type I migration

Massive planets: Gap
➝ type II migration
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Planet-disk interactions
Planet - disk interactions

Simulations by P. Armitagesurface density

Note:
- planet generates non-axisymmetric potential
- this potential generates density waves
- density waves result in torques on planet
- torques change angular momentum

Small mass planets: No gap
➝ type I migration

Massive planets: Gap
➝ type II migration

Large scale signature of 
planet-disk interactions

observationally testable!
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1330 A. Crida and A. Morbidelli

6 M O D E L L I N G T H E M I G R AT I O N R AT E

It seems quite logical that, when the planet opens a clean gap, its
migration follows a proper type II regime. With a Jupiter mass planet
and a disc aspect ratio of 0.05, this happens for R > 105 (see Figs 1
and 2).

However, for smaller Reynolds numbers, the gap is not com-
pletely gasproof. The gas in the gap has two major consequences:
(i) it partially sustains the outer disc, effectively reducing the torque
felt by the planet from the outer disc; (ii) it exerts a corotation torque
on to the planet. The possibility of gas flowing through the gap de-
couples the planet from the gas evolution.

In this section we show with a simple model that taking into
account these effects allows us to explain the evolution of the planet
as a function of the various parameters. Our model is based on
previous works on the corotation torque (Masset 2001), the viscous
evolution of accretion discs (LP74) and the shape of gaps (Crida
et al. 2006).

6.1 Classical type II torque

In an accretion disc, the viscous stress is such that angular momen-
tum flows outward while matter falls on to the star. In a Keplerian,
circular disc with ν and " independent of the radius, the torque
exerted by the part of the disc extending from a given radius r0 to
infinity on the inner part {r < r0} is Tν = −3π"νr0

2#0 (it can
be easily found from the strain tensor). It causes a mass flow of
gas F, carrying the equivalent angular momentum: Tν = Fr0

2#0 =
(2πr0"vr) r0

2#0, where vr is the radial velocity of the gas. In this
model vr = −(3/2)(ν/r0), which can also be found from the Navier–
Stokes equations. This gives the following equality, which we will
use further:

ν = −2vr

3
r0. (5)

If a planet opens a deep gap in such a disc, no gas flow is allowed
through the planetary orbit. The outer disc is maintained outside
of the gap by the planet, and an equilibrium is reached so that the
planetary torque balances Tν . Consequently, the planet feels from
the outer disc the torque Tν . This torque is proportional to the vis-
cosity and not to the planet mass. This is the case of standard type
II migration.

In a more realistic, viscously evolving disc, the scheme for type
II migration is the same, but the above formula for Tν is no longer
valid. In that case, the equations of LP74 provide the density, the
viscous torque and the radial velocity as a function of radius and
time. In our case of a disc with Rinf > 0, it gives

Tν = 3πν"0T −5/4 (h − hinf) exp

(
−ar 2

T

)
, (6)

"LP74 = Tν

3πν
√

r
, (7)

F = −∂Tν

∂h
, (8)

vr = F
2πr"LP74

, (9)

where h = r 2# =
√

r is the specific angular momentum. Notice
that equation (6) is exactly equation (25) in LP74, while equation (7)
is equivalent to equation (2).

Thus, in standard type II migration, we consider that the planet
feels from the disc a torque

TII = Fh = 2πr+"LP74(r+)vr(r+)
√

r+, (10)

where r+ = rp + xs is the radius of the external edge of the gap, and
"LP74 and vr come from equations (7) and (9), respectively.

6.2 Torque exerted on the outer disc by the gas in the gap

The gas in the gap, the density of which is denoted "gap, exerts on the
outer disc a positive viscous torque T(i) that is given by equation (10),
with "gap instead of "LP74 and the opposite sign. This torque par-
tially sustains the outer disc, and therefore needs to be subtracted
from the torque that the planet would suffer from the outer disc if
the gap were clean (given by equation 10). So, denoting by f the
ratio "gap/"LP74 we have

T(i) = − f TII. (11)

We now discuss how to evaluate f in practice. We have presented
in Section 5 a way to compute semi-analytically the gap profile and
the gap depth. However, making a step-by-step integration until the
bottom of the gap it is not very convenient. Consequently, we looked
for a simple empirical formula for the gap depth as a function of
the viscosity, the aspect ratio of the disc and the planet mass. Crida
et al. (2006) showed that the density inside the gap is less than
10 per cent of the unperturbed value (i.e. f < 0.1) if and only if

P = 3
4

H
RH

+ 50
qR

! 1. (12)

Using equation (3), we have computed the depth of the gap for
various values of the parameter P . For each value of P , we impose
q = 10−3 and H/r = 0.05, and find the corresponding viscosity.
Then, we use these parameters in equation (3); the obtained gap
depth is shown as big dots in Fig. 8. We repeat the same operation
for q ranging from 5 × 10−4 to 2 × 10−3; the results are reported
as crosses in Fig. 8. Furthermore, we impose q = 10−3 and ν =
0, and find the corresponding H/r and the resulting gap depth. We
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Figure 8. Gap depth (measured as ratio of the gap surface density to the
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Fig. 1. Logarithmic plots of the surface density Σ for the relaxed state
after 2000 orbits for two different masses of the planet which is located
at r = 1.0 in dimensionless units. Top: q = 3.0×10−3, and bottom: q =
5.0 × 10−3 calculated with NIRVANA. The inner disk stays circular
in both cases but the outer disk only in the lower mass case. For q =
5.0×10−3 it becomes clearly eccentric with some visible fine structure
in the gap. For illustration, the drawn ellipse (solid line in the lower
plot) has one focus at the stellar location and an eccentricity of 0.20.

expected due to the stronger gravitational torques. For the low-
est mass q = 0.001 model (solid line) the gap is not completely
cleared.

3.2. Dependencies on numerical parameters

The threshold mass where the transition from circular to ec-
centric occurs apparently depends on the width and shape of
the gap, and parameters that will change the gap structure will
also change this threshold mass. Before we analyze physi-
cal influences we display in Fig. 4 the surface density profile
and the disk eccentricity for models using different numerical

1 2 3 4
0

.05

.1

.15

.2

r

   
D

is
k 

E
cc

en

 t = 2500
 1 M_jup
 2 M_jup
 3 M_jup
 4 M_jup
 5 M_jup

Fig. 2. Disk eccentricity as a function of radius for the several models
with q = 0.001 up to q = 0.005 at t = 2500 orbits, for the q = 0.003
model at t = 3850. For the two lower curves q = 0.001 and q = 0.002,
the outer edge of the computational domain lies at rmax = 2.5.
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Fig. 3. Azimuthally averaged radial profiles of the surface density for
different planet masses, for the same models and times as in Fig. 2.
The width of the gap increases with planetary mass.

parameters but all with same physical setup for q = 0.004, and
at the same evolutionary time of 2500 orbits (the high resolu-
tion model at t = 1750 orbits).

The solid line refers to the basic reference model (as in
Fig. 3, 4 MJup model). We first find that the mass value where
the transition occurs may depend on the location of the outer
boundary rmax. If the stand-off distance of the planet to the
outer boundary is too small the damping boundary condi-
tions, which tend to circularize the disk, prevent the disk from
becoming eccentric. The simulations using a 4 MJup planet
and a smaller rmax clearly shows this effect. For this mass
of the planet the disk will not anymore become eccentric for
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Gap formation: Type II migration

Transition to type II:
opening of gap

Gap opening citerion is a function of: 
- mass of star and planet
- structure of disk
- viscous transport

observationally testable!
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Simulations by C. Baruteau

Planet migration

Monday 20 February 12



inertial frame rotating frame

Simulations by C. Baruteau

Planet migration

Monday 20 February 12



forward pull: Outwards migration

backward pull: Inwards migration

inertial frame rotating frame

Simulations by C. Baruteau

Planet migration
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Type I migration: Thermodynamics 

inward

outward

Kley et al. 2009

Thermodynamics of the gaseous disk is essential 

Crida et al. 2006; Baruteau & Masset 2008; Casoli & Masset 2009; Pardekooper et al. 2010; Baruteau & Lin 2010
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Why does thermodynamics matter?

The exchange of fluid elements lead to an overdensity at shorter radii. This 
translates into a increased torque pushig the planet outwards...
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For this mechanism to work, the fluid has to remain adiabatic during the 
exchange process. In other words: �
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simulation for 1/2 libration period

Monday 20 February 12



Why does thermodynamics matter?

The exchange of fluid elements lead to an overdensity at shorter radii. This 
translates into a increased torque pushig the planet outwards...

Entropy

r/r
p1.00

0.98

0.96

1.02

1.04

0 1 2 3-1-2-3

C. Baruteau

'� 'p

Perturbed density

r/r
p1.00

0.98

0.96

1.02

1.04

0 1 2 3-1-2-3
'� 'p

For this mechanism to work, the fluid has to remain adiabatic during the 
exchange process. In other words: �

cool

>> �
u�turn

⇥
cool

⇡ �c
V

T

Q
=

�c
V

T

2�T 4
eff

⇥u�turn ⇡ 1.16

s
h3

�q

64

9�p

simulation for 1/2 libration period

Monday 20 February 12



'� 'p

Perturbed entropy
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In other words, unless the viscosity re-establishes the original entropy profile 
before the torques saturate, the outward migration will not last... The condition 
for a sustainable outward migration is therefore: �lib >> �visc

⇥lib =
8�rp
3�pxs

simulation for 3 libration periods

⇥visc =
(2xs)2

�

C. Baruteau

Long term saturation
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Evolution & structure of the gas disk

J. Hawley

Full MHD calculations

alpha-disk model

viscous evolution:
-stellar irradiation
-external photo-evaporation (Matsuyama+ 2003)
-internal photo-evaporation (Clarke+ 2001)
-updated initial profile  (Andrews+ 2009)

all the physics...
good enough?
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Evolution & structure of the gas disk

The near IR probes the planet forming regions of the disks
both the gas and the dust
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Conclusions
Theory of planet formation is evolving fast and has changed significantly during 
the past 15 years.

Unfortunately, theory still lags behind observations.  Theorists are always 
surprised by discoveries and try to explain them. Predictions are rare...

Population synthesis is a powerful tool to explore models. Observations by 
different techniques provide different constraints. But the modeling is extremely
complex... You need to have many things right...

One would like to see the formation process in action... To get individual process
right...
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initial conditions
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initial conditions

end product
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?
Challenge for interferometry

see inside the box...

initial conditions

end product
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