Olivier Absil University of Liège

Detecting faint companions with PIONIER

PIONIER in a nutshell

Benefits of closure phase

- Not affected by telescope-specific errors
 - $\psi_{123} = \phi_{12} + \varepsilon_1 + \phi_{23} + \phi_{31} \varepsilon_1$
 - Not biased by turbulence
- ψ₁₂₃ = o for pointsymmetric objects
 - Sensitive to off-axis companions
 - Not sensitive to stellar model at 1st order

The faint companion regime

- Unresolved individual objects with contrast p
 - ψ = ρm
 - $m = \sin \alpha_{12} + \sin \alpha_{23} + \sin \alpha_{31}$
 - $\alpha_{ij} = 2\pi \mathbf{B}_{ij} \cdot \mathbf{\Theta} / \lambda$
 - Magnification factor "m" ranges from o° to 149°
 - Ex: ρ = 1% → ψ ~ 1°
- Resolved primary
 - ψ strongly enhanced
 - "Closure phase nulling"

The wavelength-differential ψ

Field-of-view limitations

- Single-mode fibers
 - Gaussian injection efficiency
 - Affected by seeing
 - FHWM ~ 400 mas
- Two fringe packets
 - Within scan window
 - Mostly superposed
 - Equivalent to good sampling of differential ψ
 - 50m baseline → max separation ~ 100 mas

The PIONIER observations

Oct-Dec 2010

- Commissioning run
- First scientific runs
- Deep integrations
 - Fomalhaut (7 OBs)
 - τ Cet (6 OBs)
- Snapshots
 - δ Aqr (1 OB)
 - Regulus (3 OBs)
- 7 spectral channels
- ~50m baselines

Companion search method

- χ² cube
 - Series of binary models compared to ψ(λ) data
- Search minimum
- Evaluate significance
 - Renormalise so that χ²_{min}=1
 - Probability of null hypothesis?

Minimum χ² maps

A companion around δ Aqr

- Long period RV + astrometry
- Contrast 2.05% ± 0.16%
 - A₃V + G₅V system
- Position ambiguous

Deriving upper limits

- Based on χ² cube
 - Renormalise $\chi^2|_{\rho=0} = 1$
 - Find ρ such that model at more than 3σ from data
- Double blind test
 - Fake companions inserted into calibrated ψ data
 - Count the fraction of good detections vs ρ

Deep search: χ² cube results

- 3σ sensitivity on
 100 mas region
 - Fom: 2.3 × 10⁻³
 - τ Cet: 3.5 × 10⁻³
- 90% upper limit
 - o.17 M_{sun} (~M6V)
 - 0.09 M_{sun} (~BD)
- Exclude
 companion as
 source of near infrared excess

Deep search: blind test results

- Confirms the χ² results
- Median sensitivity
 - Fom: 1.9 × 10⁻³
 - τ Cet: 3.2 × 10⁻³
- False detections
 - $\leq 2.3 \times 10^{-3}$
 - $\leq 3.5 \times 10^{-3}$

Snapshot results (Regulus)

- Median sensivitity: 5.4 × 10⁻³
- Poor uv plane coverage → zones with low sensitivity
- Blind test ok for contrast but not for position
 - "Side lobes" of instrument PSF

Sensitivity vs number of OBs

- Assume accuracy of 0.25° on A1-G1-I1-Ko
- Pointings at hour angles
 - oh
 - -1h, oh, 1h
 - -2h, -1h, oh, 1h, 2h
- Median sensitivities
 - 6×10⁻³, 4.5×10⁻³, 4.0×10⁻³
 - Huge improvement in completeness
- 3 pointings ok for survey

Sensitivity vs configuration

- Sensitivity does not depend on configuration
- Configuration size still matters
 - Sets inner working angle and FOV size
- Companion search = ideal filler program!

Astrophysical applications

- Performance summary
 - Noise floor ~ 0.2°
 - Dynamic range ΔH~6
 - Valid up to H~6 (?)
- Warm BD/planets
 - Transition objects
 - Moving groups
 - Hot Jupiters ... not yet
- Binary fraction of massive stars
 - Mass ratio up to ~15

Age	AoV	GoV	MoV
10 Myr	0.09 M _{sun}	0.017 M _{sun}	0.012 M _{sun}
50 Myr	0.22 M _{sun}	0.043 M _{sun}	0.013 M _{sun}
200 Myr	0.35 M _{sun}	o.o8 M _{sun}	0.030 M _{sun}

