Magnetic fields of AGB and post-AGB stars

Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn)

Argelander-Institut für Astronomie

Deutsche Forschungsgemeinschaft

Outline

- Magnetic fields in (post-)AGB envelopes
 - SiO, H_2O and OH maser polarization observations
 - Comparison of energy densities
- Implications and questions
 - Mass-loss Magnetic field relation?
 - Origin of the measured fields
 - Further field tracers
 - dust & line polarization with ALMA
 - (polarized) radiative transfer (ARTIST)
- Summary
 - role for (new) interferometry instruments

Circumstellar Masers

- "Onion model"

 Dust at few AU
 Molecules until
 dissociation by UV
- Excitation varies

 SiO at few AU
 H₂O up to few 100 AU
 OH at 500 10.000 AU
- As V_{exp} increases

 –from tangential to radial amplification

CSE Fields: SiO Masers

- SiO Masers:
 - Highly ordered Magnetic
 Fields
 - Field Strengths (Zeeman):
 - Supergiants: up to 100 G
 - Miras: up to several 10s G
 - Average 3.5 G, single dish, lower limit due to blending (Herpin et al. 2006, A&A 450 667)
 - *But*: non-Zeeman interpretation:
 - Fields factor 1000 less (Nedoluha & Watson 1990, ApJ 361 L53)

Kemball and Diamond, 1997, ApJ 481 L111 Kemball et al. 2009, arXiv/0904.262

CSE fields: H₂**O** masers

- H₂O masers:
 - Field strengths (Zeeman, non-LTE):
 - 0.1-2 Gauss
 - No linear polarization
 - Indications for large scale structure
 - VX Sgr
 - Supports SiO Zeeman interpretation

CSE fields: OH Masers

- OH Masers:
 - Indication of alignment with CSE structure
 - Supergiants and Miras ⇒
 few mG fields
 - Extrapolation to the star uncertain
- Polarimetric map of 1612
 and 1665 MHz OH
 masers shows clear
 alignment with the CSE
 (Etoka & Diamond, EVN symposium)
 - 2-4 mG field strength

Evolved star CSE Magnetic Fields

- SiO at ~2 stellar radii
 - B~3.5 G
 - up to tens of Gauss
 - Radial magnetic field
- H2O at ~50-500 AU
 - B~0.1-2 G
 - Supergiant VX Sgr shows dipole field
- OH at ~250-10.000 AU
 - B~1-10 mG
 - Alignment with circumstellar envelope

Kemball et al. 1997, 2009; Herpin et al. 2006 Vlemmings et al. 2002, 2005 Etoka et al. 2004, Reid et al. 1976

Large vs. Small scale fields

- Are we measuring isolated pockets of compressed field lines, or a large scale field?
 - polarization structure consistent through the CSE, but sample is still small.

Pressures throughout the CSE

Maser	V _{exp} [km/s]	B [G]	n [cm ⁻³]	T [K]	B ² /8π [dyne/cm ²]	nkT [dyne/cm²]	$ ho V_{exp}^2$ [dyne/cm ²]
ОН	~10	~0.003	~10 ⁶	~300	10-6.4	10 ^{-7.4}	10 -5.9
H ₂ O	~8	~0.3	~10 ⁸	~500	10-2.4	10-5.2	10-4.1
SiO	~5	~3.5	~10 ¹⁰	~1300	10 ^{+0.1}	10-2.7	10-2.5
photo- sphere	~15	?	~10 ¹⁴	~2500	?	10+1.5	10+2.4

from Reid 2007

Beyond the AGB-phase: W43A

- Toroidal, collimating magnetic field: $B\phi = 200 \text{ mG}$
- Enhanced in the H₂O masers
 - Around the jet $B = 100 \ \mu G$ from OH masers (see Talk by Amiri)
 - GBT confirmed strength and reversal.
 - Extrapolated (B $\phi \propto$ r-1) indicates a surface magnetic field of B~2 G.

PNe Dust Polarization

6537

NGC NGC

- Submm dust polarization observations of PNe support magnetic shaping
 - asymmetric dust grain distribution aligned with magnetic field
 - primarily toroidal magnetic fields
 - At distances of several 10^{16} cm typical field strengths ~1 mG
 - Timescale for dust alignment $t \propto B^{-2}$, for 1 mG fields is ~10⁶ yr
 - However, nebula timescale is $\sim 10^4$ yr
 - Alignment occurs closer to the star and is maintained in the outflow
 - \Rightarrow magnetic shaping of the outflow

850

um SCUBA polarization

Outf.

Mass-loss vs. Magnetic Field

- Does magnetic pressure contribute to AGB mass-loss
 - recent 3D radiation pressure models not sufficient (e.g. Woitke 2006)
 - Alternatives e.g. different grain composition (talks Höfner/Ramstedt)
- Measuring direct relation difficult due to different maser distances and unknown CSE ⇒ star extrapolation
 - current observations indicate changing slope from B∝R^{-1.2} (close to star) to B∝R⁻⁽²⁻³⁾ (after few AU)
 - not unreasonable considering predictions

Mass-loss vs. Magnetic field (II)

• Hypothesis:

- $(dM/dt) \propto B_0^{\beta}; B(H_2O) \propto R(H_2O)^{-x}$
- H_2O masers (unknown radius): $R(H_2O) \propto (dM/dt)^{0.52}$ (Cooke & Elitzur 1985)
 - $\Rightarrow B_{H2O} \propto B_0 (dM/dt)^{-0.52x} \Rightarrow B_{H2O} \propto (dM/dt)^{-0.52x+1/\beta}$
 - $\alpha = -0.28 = -0.52x + 1/\beta \Rightarrow \beta = 1/(0.52x 0.28) \Rightarrow \beta \sim 1 4$

Mass-loss vs. Magnetic field (II)

• Hypothesis:

- $(dM/dt) \propto B_0^{\beta}; B(H_2O) \propto R(H_2O)^{-x}$
- H₂O masers at known radius!!:
 - Taking B∝R⁻¹
 - $\alpha = 1/\beta = 0.24 \Longrightarrow \beta \sim 4$

Mass-loss vs. Magnetic field (II)

• Hypothesis:

- $(dM/dt) \propto B_0^{\beta}; B(H_2O) \propto R(H_2O)^{-x}$
- H₂O masers at known radius!!:
 - Taking $B \propto R^{-2}$
 - $\alpha = 1/\beta = 0.78 \Longrightarrow \beta \sim 1.3$

Mass-loss vs. Magnetic field (II)

- Hypothesis:
 - $(dM/dt) \propto B_0^{\beta}$; B(SiO) \propto R(SiO)^{-x}
 - SiO masers at unknown radius!!
 - No relation known between dM/dt and SiO maser radius
 - Observations cannot determine mass-loss vs. B relation

Mass-loss vs. Magnetic field (II)

- Hypothesis:
 - $(dM/dt) \propto B_0^{\beta}$; B(SiO) \propto R(SiO)^{-x}
 - SiO masers at unknown radius!!
 - No relation known between dM/dt and SiO maser radius
 - Observations cannot determine mass-loss vs. B relation

Origin of the Magnetic Field

- Observations only show local magnetic fields ?
 - Unable to explain large scale structure in SiO, H_2O , OH maser observations and dust alignment (but what about AGB X-rays ?)
- Internal dynamo between stellar envelope and fast rotating core ?
 - Extra source of rotation needed to counteract energy loss due to field drag
- Interaction with circumstellar disk?
 - But what is the origin of the disk ?
- Spin-up due to binary or heavy planet?
 - Possible source of the W43A jet precession though large sample of magnetic stars show no indication of companion (yet)
- Look for sources of collimation/magnetic fields and the effect of fields close to the star
 - ALMA/SMA will image dust continuum and polarization as well as other high density tracers
 - Infrared/mm interferometers studies (many examples during this meeting)

ALMA Dust/Line polarization

- Polarization will be a by-product of most ALMA observations
- Potentially detect polarization of circumstellar dust and polarization of lines emission such as CO, CN, HCN and SiO.
- Adaptable Radiative Transfer Innovations for Submm Telescopes (ARTIST)
 - Joergensen, Vlemmings (Bonn), Girart (Barcelona), Hogerheijde (Leiden)
 - 3D (polarization) radiative transfer
 - main driver star-formation, adaptable to evolved stars
 - Need: model library or direct input from e.g. MHD simulations

Summary / Questions

- Dynamically important large scale magnetic fields occur in the envelopes of evolved stars
 - SiO, H₂O and OH maser observations consistent with solar-type or dipole magnetic field
- The observations of W43A are the first ever direct measurements of an astrophysical magnetically collimated jet
- The strong magnetic fields could be the missing component needed to explain AGB mass-loss
 - Alfvén waves can help drive mass-loss
- <u>Questions:</u>
 - How widespread are AGB magnetic fields?
 - What is the origin of the magnetic field?
 - Single star dynamo, binary, heavy planet, disk interaction
 - Are magnetically collimated jets common features of the proto-planetary water fountain sources ?
 - Are they the explanation for asymmetric (bi-polar) PNe?

Summary / Questions

