Resolving evolved Sun-like stars' mass loss

Anita Richards UK ARC, JBCA, Manchester

with thanks to

Bains, Bartkiewicz, Diamond, Dinh Van Trung, Gray, Lekht, Lim, Mendoza, Murakawa, Rosa-Gonzalez, Szymczak, van Langevelde, Verhoelst, Vlemmings, Yates, Zijlstra et al.

EUROPEAN ARC ALMA Regional Centre || UK

ř

MANCH

Science & Technology Facilities Council

Sorry to come between us and dinner...

9

G

Overview

- Structure of 22-GHz H₂O masers in CSE
 - MERLIN+EVN H_2O and OH monitoring + single dish
 - 10+ Supergiants and AGB stars
 - Clumpy mass loss
 - Evidence for dust evolution
- Cloud size related to star size
 - Determined by stellar phenomena?
- Direct imaging of mass loss from star
 - *e*-MERLIN, EVLA, ALMA, VLTI, MROI...
 - Trace mass loss through maser and dust zones

H₂O masers in AGB & RSG CSEs

All scaled to same distance

SRb RT Vir

Miras IK Tau

UHer

Water maser shells

- AGB/RSG at few 100/1000 pc
 - MERLIN detects
 ~all 22-GHz
 masers
 - 0.1 km/s channels
 - Milli-arcsec resolution
- Trace position shifts
 - Typically 5-10 mas in ~1-2 km/s
 - Intensity rises then falls

Water maser shells

- AGB/RSG at few 100/1000 pc
 - MERLIN detects
 ~all 22-GHz
 masers
 - 0.1 km/s channels
 - Milli-arcsec resolution
- Trace position shifts
 - Typically 5-10
 mas in ~1-2 km/s
 - Intensity rises then falls

Maser component structure

- Masers sample deepest column depth in channel δV
 - Grouped into clouds
 - Typical diameter
 RT Vir 1 –2 AU
 - No preferred direction of elongation
 - Clouds on average spherical?

Expansion and acceleration

- $V_{\rm LSR}$'s suggest radial expansion, acceleration
 - Proper motions consistent with V_{ISR}
 - No systematic rotation
 - Shell is elongated &/or has denser but faster equatorial belt

RT Vir cloud proper motions

Maser survival

- IK Tau 1.5 yr expansion proper motions *Yates & Cohen 94*
- AGB maser features survive less than 2 yr
- U Ori: 5 clouds survive a year (large symbols)
 - no clear direction of motion
- U Her: **14 clouds matched** 2000 - 2001
 - Expansion 2.7(0.1) km/s
 - Rotation 0.3(0.1) km/s
 - Negligible rotation?

Maser variability

- U Ori shell 1994 elongated NE-SW
- Shape changes over the years
 - Masers dis/ appear in different regions of shell
- Peaks at different position angles
 - But similar velocities and angular separations from centre of expansion

U Ori 1999

U Ori 1994

Cloud survival

- AGB masers fade in <few yr
 Cloud sound crossing time
- Shell crossing time >10 yr
 Clouds must
 - survive
- Masers wink on and off
 - Might see them from a different angle!

Stellar asphericity?

- VLTI talks
- U Ori 2000 lunar occulation 2μm
 - Mondhal+ 2004
- Is alignment coincidence?
 - Is shape persistent
- Need years of stellar shape monitoring
 - Astrometry vital
 - e.g. Pluzhnik et al. misaligned

Magnetic axis?

- W Hya
 - Radio photosphere
 69 x 46 mas, PA 86°
 - Epoch 2000
 - OH mainline maser
 Zeeman splitting
 - Dipole?
 - Almost orthogonal magnetic axis
 - Epoch 1996
- Also see Szymczak, Vlemmings, Kemball, Diamond etc.
 - Hard to establish persistent orientation

Magnetic axis?

- W Hya
 - Radio photosphere
 69 x 46 mas, PA 86°
 - Epoch 2000
 - OH mainline maser
 Zeeman splitting
 - Dipole?
 - Almost orthogonal magnetic axis
 - Epoch 1996
- Also see Szymczak, Vlemmings, Kemball, Diamond etc.
 - Hard to establish persistent orientation

x

Water maser cloud density

- Inner edge of maser shell r_i ~5 -10 AU
 - Collision rate quenches masing (Cooke&Elitzur 85)
 - Quenching density $n_q(r_i) \sim 5 \times 10^{15} \text{ m}^{-3}$
 - >> wind density interpolated from CSE average
 - $n(r_i) \dot{M}_{(CO, IR)} \sim 10^{14} \text{m}^{-3}$

RT Vir H₂O clouds typically 1 AU diameter
 Clouds 50 –100 x overdense

AGB maser clouds

• **R**_o ~25 –50 AU

Printed: 04/03/10

p17

- 10 100 maser clouds per shell
 - Filling factor $\leq 1\%$
- Shell crossing time ~(few) decades
 - 1- few clouds / period

CMERLIN

Maser cloud properties

Mira SRb	d <i>M</i> /d <i>t</i> CO/IR (M _⊕ yr ⁻¹)	H₂O shell <i>r</i> i (AU)	H₂O shell <i>r</i> ₀ (AU)	H₂O over- density	Number of H ₂ O clouds	H₂O cloud size <l>(AU)</l>	OH shell <i>r</i> _i (AU)
U Ori	~0.08	9	34	100	15-30	2 –5	60
U Her	~0.12	11	45	240	35-45	2 –5	35
IK Tau	~9	17	70	45	40-250	2 –4	160
RT Vir	~0.05	5	22	115	40-60	1 –1.5	13

- H_2O clouds much denser than surroundings/OH gas - Filling factor $\leq 1\%$
- Cloud mass 0.01 –0.1 $\,\,M_\oplus$
 - 1- few clouds / period
 - 30% -95% of mass loss is in clouds

Dust-driven wind acceleration

• Verhoelst et al.

Maser results and prospects

- Kinematics
 - 0.1 km/s or better velocity resolution
 - Position accuracy ~ synthesized beam/SNR
 - 10 –100 µas VLBI –MERLIN
 - Proper motions in weeks: full 3D structure, distance
- Size and evolution of emitting material
 - Interpreting shapes is model-dependent
 - Distinctive amplification from shocks v. spheres
- Magnetic fields (stellar origin?) Vlemmings
- Evolutionary stage (rapid post-AGB changes)
- Physical conditions (model-dependent)
 - Constrain density, temperature, τ (pump/cascade photons)
 - Helps to have multiple transitions
 - ALMA: excited H_2O around 180, 300, 600 GHz...
 - Some inside dust formation radius, some outside

TX Cam (Diamond & Kemball)

- SiO masers within a few
 R_★
- See Wittkowski et al. Posters
- Region probed by excited H₂O masers

H_2O maser $R_{cloud} \propto Stellar mass M_{\star}$

EUROPEAN ARC ALMA Regional Centre || UK

A M S Richards ESO March 2010 p22 Printed: 04/03/10

R_{cloud} set by star properties?

- Esimate Stellar mass *Wood 89*
 - $-\log M_{\star} = (-2.7 + 1.94 \log R_{\star} \log P) / 0.9$
 - *P*eriod from AAVSO, GCVS, *Etoka+01*
 - Measure stellar radius R_{\star} from opt/IR interferometry
 - Skinner+88, Mennesson+02, Monnier+04, Ragland+06
- Cloud size is a function of stellar mass and radius
 - In water maser shell $R_{\rm c} \sim 0.7 \pm 0.1 R_{\star}^{1.2 \pm 0.1}$

• Suggests that cloud properties are determined when mass is ejected from star

- Not e.g. due to cooling scales during dust formation
 Such microphysics should not care about M₊
- $R_{\text{cloud}} \propto R_{\star}$ (birth radius $0.1R_{\star}$ if outflow expands as r⁻²)

Resolving Betelgeuse

- Only well-resolved star (apart from Sun)
- VLA barely resolves at 5 GHz (colour scale)
 Old MERLIN only detected hotspots at 5 GHz
 - Combined image shows details (contours)

e-MERLIN + EVLA stellar imaging

- Beam 10-50 mas *e*-MERLIN &/or EVLA
 - K-band (21 26 GHz), Q-band (<50 GHz)
 - 10 100 resolution elements per star
 - Persistent axisymmetry would imply magnetic axis
 - Variations: convection or non-radial pulsations
- α Ori: 250 μ Jy/beam peaks @ 22 GHz
 - Need σ_{rms} < 17 μ Jy/beam to detect 20% fluctuations
 - e.g. 12 hr e-MERLIN, 1.5 hr EVLA per epoch
- AGB/ RSG: masers for calibration (*Reid & Menten*)
 *R*_★ 15-40 mas @22 GHz, 1 few mJy total flux

Different v's trace different layers

- $r_{22 \text{ GHz}} \sim 2r_{\text{photosphere}}$
- Cool free-free gas
 - Low chromospheric filling factor
- Betelgeuse (*Harper, Lim, Chiavassa, Freytag...*)
 - 2-3 main cells
 - Lifetime years
 - Scale height 5-10% R_{\star}
 - Variegated changes: convection?
 - Correlated changes: pulsation?

- UK radio interferometer
 - -1.3-1.7, 4-8, 21-26 GHz wavebands
 - λ 22 1.2 cm
 - -200 10 mas angular resolution
- Upgrade to e-MERLIN
 - Optical fibres, Rx, correlator etc.
 - 2 GHz bw ~fills aperture<8 GHz
 - $-\mu$ Jy continuum sensitivity
 - -Spectral line sensitivity >doubled
- 7 antennas, \geq 217 km baselines
 - -Five 25-m dishes, one 32-m
 - -Upgraded Lovell 75-m at v \lesssim 8 GHz

e - MERLIN capabilities

- Resolution matches HST/JWST/ALMA
 - Sub-mas ICRF astrometry, in-beam calibration
 - Full polarization
- $6 \mu Jy 3-\sigma$ sensitivity in 12 hr at 4-8 GHz (2-GHz bw) - 40-mas resolution, up to 8-arcmin field of view
- ~15 μ Jy continuum sensitivity at other frequencies
- Spectral line sensitivity 7-20 mJy in 0.1 km/s
- Early science later this year
 - Open access (via UK PATT peer review)
 - Joint observations with EVN/ Global VLBI
- http://www.e-merlin.ac.uk

Radio array imaging capabilities

A M S Richards ESO March 2010 p30 Printed: 04/03/10

e-MERLIN complements EVLA, VLBI

- Spectral line *uv* coverage at 1.6 GHz

PNe in all their glory

- e-MERLIN+EVLA resolve α , T*e*, τ etc (*Zijlstra*) - NGC 7027: MERLIN loses flux, VLA loses detail

PNe in all their glory

MERLIN and VLA detect and resolve full details (Bains et al.)

Track wind from photosphere to ISM

BOPEAN ABC

Resolvable stellar continuum

Star	D (pc)	Туре	R_{\star} (mas)	R ₂₂ (mas)	H ₂ O?
W Hya	95	SR	21.3	40	У
η Gem	107	SR + G+M	6.3	12 - 10	n
o Cet	110	Mira + WD	22	35 - 30	faint
α Her	117	Mgiant + G + ?	16	25 - 20	n
CW Leo	130	C-RSG	35	<i>100+</i> - 50	n
RT Vir	133	SR	6.2	29 - 12	У
α Ori	190	RSG	23	55	n(?)
R Aqr	220	Symbiotic Mira	9	<i>18+</i> - 15?	faint
IK Tau	266	Mira	11.2	14 - 22	У
U Her	266	Mira	5.4	14 - 11	У
U Ori	266	Mira	6.7	14 - 13	У
VY CMa	1500	RSG	9.4	<i>19+</i> - 17	У
VX Sgr	1700	RSG	4.4	9 - 15	У
NML Cyg	2000	RSG	3.9	8 - 13	У
S Per	2300	RSG	3.5	7 - 12	У

- 22 GHz flux likely to be >60 μJy per 10-30 mas beam

- **Bold**: resolved *RM* 97, Lim+98

- *Italic*: may be wind contribution *Menten+06, Lipsky+05*

e-MERLIN capabilities

- Sub-mas ICRF astrometry, in-beam calibration
- Full polarization
- Resolution matches HST/JWST/ALMA
- μ Jy sensitivity in 12 hr

	L-band	C-band	K-band
GHz/cm	1.3-1.725 / 23-17.4	4.2-7.8 / 7.1-3.8	21.5-24.5 / 1.4-1.2
Ang. resol'n	220 - 110 mas	70 - 30 mas	13 - 8 mas
FoV	13 - 30 arcmin	4 - 7 arcmin	2 arcmin
Continuum	sensitivity /beam	sensitivity /beam	sensitivity /beam
	(max Δv /subband)	(max Δv /subband)	(max Δv /subband)
3σ 12 hr / 4 hr	14 μJy / <mark>25 μJ</mark> y	6 μJy / <mark>10 μJy</mark>	15 μJy / <mark>26 μJy</mark>

Spectral capabilities

- Resolution $\delta v \ge 2 \text{ Hz} (\lambda/\delta \lambda \le 7 \times 10^8 \text{ @ 21cm})$
- Transfer calibration between lines and continuum
 - 2-3x better sensitivity due to better Rx & calibration
- Multiple lines and continuum simultaneously
 - Easy to match spectral configuration with EVLA/VLBI

Spectral	L-band	C-band	K-band
<mark>3σ 12 hr / 4 h</mark>	sensitivity /beam	sensitivity /beam	sensitivity /beam
Lines:	(per channel)	(per channel)	(per channel)
0.05 km/s	23 mJy / <mark>40 mJy</mark>	10 mJy / <mark>17 mJy</mark>	32 mJy / <mark>55 mJy</mark>
3 km/s	2.9 mJy / <mark>5 mJy</mark>	1.3 mJy / <mark>2.2 mJy</mark>	4 mJy / <mark>7 mJy</mark>
Continuum	(max Δv /subband)	(max Δv /subband)	(max Δv /subband)
12 subbands	17 μJy / <mark>30 μJy</mark>	8 μJy / 14 μJy	17 μJy / <mark>30 μJy</mark>

Measuring 'true' maser cloud size

Cloud properties

Cloud D=18 AU at 1 kpc

1.2 km/s total line width

Largest angular separation across all channels is actual cloud size $(18 \pm 5 \text{ mas})$ (to limits of sensitivity)

p38

