IR spectro-interferometry of cool evolved stars

Keiichi Ohnaka Max-Planck-Institut für Radioastronomie Infrared Interferometry Group

1) Mid-IR interferometry of Mira stars

2) Near-IR spectro-interferometry of red supergiants

3) Near-IR spectro-interferometry of non-Mira AGB stars

Mass loss in AGB stars

Very Large Telescope Interferometer (VLTI)

4 Auxiliary Telescopes (1.8m, Movable)

Change the array configuration depending on object's size/shape & Science cases

MID N band $(8 - 13 \mu m)$

Spectral dispersion (30 or 230)
 → Visibility measurements across molecular bands and dust features

AMBER J, H, & K band $(1 - 2.4 \mu m)$

Spectral resolution (35, 1500, 12 000)

Visibility measurements in atomic/molecular lines

3-way beam combiner → Closure phase (object's asymmetry, aperture synthesis imaging)

IR interferometry of Mira stars

K. Ohnaka, M. Schöller, T. Driebe, S. Morel, G. Weigelt, M. Wittkowski

Scientific goals

Observe a few selected Miras at multiple epochs with 3 different baselines at different position angles

→ Measure phase dependence radial structure of the outer atmosphere & dust shell possible deviation from spherical symmetry

	R Car	R Cnc	Z Pup
Period	308 days	361 days	508 days
Variability in V	5—6 mag	5—6 mag	6—7 mag
# obs.	38	30	35
# epochs	9	6	4

Total observing time = 103 hours

Results

- ✓ Only marginal temporal variations detected in 3 O-rich Miras
 - In contrast to the C-rich Mira V Oph (Ohnaka et al. 2007)
 - \rightarrow O-rich Miras show lesser temporal variations?
 - or observed just in "quiescent" cycles?
- No significant deviation from centrosymmetry in R Car & Z Pup PA coverage too small for R Cnc
- No cycle-to-cycle variation detected (R Car) But compared only at 1 phase
- ✓ Modeling is underway

Probing inhomogeneous structures in red (super)giants Spatially resolving the dynamics in the atmosphere of Betelgeuse

 Inhomogeneous structures detected
 Miras: R Aqr (Ragland et al. 2008) U Ori (Pluzhnik et al. 2009) χ Cyg (Lacour et al. 2009)
 Red supergiants: Betelgeuse

→ Key to understanding of mass loss mechanism in red (super)giants

✓ CO first overtone lines @ 2.3 µm
 → Probing the outer atmosphere
 = wind acceleration zone

 ✓ AMBER high resolution spectro-interferometry
 Betelgeuse = best-studied RSG Baseline = 16-32-48m
 Spectral resolution = 12000
 → Individual CO lines resolved

AMBER observations of the red supergiant Betelgeuse Spatially resolving the star in the CO lines

- Spatially resolved in the individual CO lines for the first time
 - ✓ 48m baselines = 9 mas resolution (Beam size = 1/5 ×star's size)
 - → Highest resolution ever achieved for Betelgeuse at any wavelength
 - ✓ Visibility & Closure phase asymmetric with respect to the line center
 - → The star looks different in the red & blue wings
 - \rightarrow Inhomogeneous velocity field

AMBER observations of the red supergiant Betelgeuse Model with an inhomogeneous velocity field

Results

Gas motion in a stellar photosphere spatially resolved for the first time other than the Sun Velocity amplitude = 10—15 km/s

✓ Extended CO layer detected
 CO column density = ~10²⁰ cm⁻²
 T~ 1800K
 Radius ~ 1.4 R_∗

 Vigorous gas motion in the outer atmosphere

AMBER observations of the red supergiant Betelgeuse 1-D aperture synthesis imaging in the CO lines

AMBER observations of the red supergiant Betelgeuse 1-D aperture synthesis imaging in the CO lines

New data taken in Jan. 2009 54 (u,v) points along position angle = 70° from the 1st to the 5th visibility lobe Image reconstruction with MiRA (Thiebault et al. 2008)

Intensity distribution projected onto the baseline vector

Baseline vector

First high-spectral resolution aperture synthesis imaging in the individual CO lines

- First "line" image of the extended molecular layers in red supergiants
- CO shell size =
 1.4 × Continuum size
 - $1.4 \times \text{CONTINUUM SIZE}$
 - \rightarrow Agrees with the modeling

What about AGB stars -- less luminous counterparts?

 Mass loss mechanism of non-Mira AGB stars not well understood Outer atmosphere of non-Mira AGB stars

semiregular & irregular variables \rightarrow small variability amplitudes: $\Delta V = 1-2$

 \rightarrow No clear periodic variations

 \rightarrow Still, mass-loss rates can be comparable to Miras (~10⁻⁷ M_{\odot})

✓ Non-Mira AGB stars the majority of AGB stars

General Catalog of Variable StarsMira-type6287 starssemi-regular / irregular9777 stars

 High spatial & spectral resolution AMBER observations of the CO first overtone lines in a semi-regular variable BK Vir BK Vir (yet another late M giant) Angular diameter = 10.5 mas Teff = 2900K d = 180 pc (parallax known) $L = 2700 L_{\odot}$ $M = 1 - 2 M_{\odot}$ $\log g = 0.0$ Mass-loss rate = a few x 10⁻⁷ M_{\odot}

Observations

Baseline = 16-32-48mSpectral resolution = 12000 $2.26-2.31\mu m$ DIT = 6s with FINITO \rightarrow Absolute calibration uncertain \rightarrow Visibilities scaled to UDD=10.5mas

in the continuum

- ✓ Size(CO lines) / Size (cont.)
 = 1.14 1.33
- \checkmark Inhomogeneities in CO lines
- No asymmetry with respect to line center
 - → Velocity amplitude much smaller than in Betelgeuse, < 5 km/s</p>

Observations

Baseline = 16-32-48m Spectral resolution = 12000 2.26—2.31µm DIT = 6s with FINITO → Absolute calibration uncertain → Visibilities scaled to UDD=10.5mas in the continuum

- ✓ Size(CO lines) / Size (cont.)
 = 1.14 1.33
- ✓ Inhomogeneities in CO lines
- No asymmetry with respect to line center
 - → Velocity amplitude much smaller than in Betelgeuse, < 5 km/s</p>

Observations

Baseline = 16-32-48mSpectral resolution = 12000 $2.26-2.31\mu m$ DIT = 6s with FINITO \rightarrow Absolute calibration uncertain

→ Visibilities scaled to UDD=10.5mas in the continuum

- ✓ Size(CO lines) / Size (cont.)
 = 1.14 1.33
- ✓ Inhomogeneities in CO lines
- No asymmetry with respect to line center
 - → Velocity amplitude much smaller than in Betelgeuse, < 5 km/s</p>

✓ Comparison with MARCS model 1-D, spherical model (Gustafsson et al. 2008) T = 3000 K $Z = Z_{\odot}$, moderately CN-processed $M = 1 M_{\odot}$ $\log g = 0.0$ \rightarrow Pressure & temperature distributions \rightarrow Computation of monochromatic intensity profile (& visibility) + spectrum (Ohnaka et al. 2006) ✓ MARCS model spectrum agrees well with the observation.

But the star is much more extended in the CO lines

MARCS model (photosphere)
 + extended CO layer

CO column density = $\sim 10^{22}$ cm⁻² temperature = 1800 K radius = 1.5 Rstar

- Temperature & radius similar to Betelgeuse, but much more dense in BK Vir
- Origin of the extended CO layer unknown.
 Low wind speed & low mass-loss rate model of Winters et al. (2000) for C-rich stars?

Concluding remarks

1) Monitoring temporal variations in 3 Miras with MIDI/AT

Only marginal temporal variations are detected No significant deviation from centrosymmetry is detected

2) Spatially resolving the inhomogeneities in the CO first overtone lines in red (super)giants

Betelgeuse

- Inhomogeneous velocity field spatially resolved
- 1-D high spectral resolution aperture synthesis imaging in the CO lines

BK Vir

CO line forming region much more extended than photospheric models

Inhomogeneities in the extended CO layer

Velocity amplitude is much smaller than in Betelgeuse

Mid-IR interferometry of time variations in Mira stars

O-rich Miras

✓ ISI, a few wavelengths near 11µm
 o Cet: Weiner et al. (2003)
 6 Miras: Tatebe et al. (2006)

✓ VLTI/MIDI, 8—13mmS Ori: Wittkowski et al. (2007)

C-rich Miras

✓ VLTI/MIDIV Oph, Ohnaka et al. (2007)

Only a few visibility points at each epoch in MIDI studies so far

N-band UD diameter of the C-rich Mira V Oph

