Fundamental stellar parameters

the fine structure of the Low Main Sequence

Luca Casagrande	Casagrande	Luca
-----------------	------------	------

Max Planck Institute for Astrophysics

MPA: I. Ramírez, M. Asplund CAUP: J. Meléndez ANU: M. Bessell

Casagrande et al. (2010, A&A - in press; arXiv:1001.3142)

I Effective Temperatures
I Bolometric Luminosities
I Angular diameters

the fine structure of the Low Main Sequence

Luca Casagrande

Max Planck Institute for Astrophysics

MPA: I. Ramírez, M. Asplund CAUP: J. Meléndez ANU: M. Bessell

Casagrande et al. (2010, A&A - in press; arXiv: 1001.3142)

Direct: interferometry (Hanbury Brown et al. 1974, van Belle & von Braun 2009)

- ✓ precise & accurate
- nearby stars (limited range)
- uniform disk

- **precise**
- 🗸 🛛 ~ model-independent
- 🗸 🔹 any star (photometry)
- reddening
- accuracy: absolute calibration

- Indirect: ionization/excitation, Balmer lines, line-depth ratio
 - ✓ precise
 - 🗸 any stars (spectra)
 - model dependent (NLTE, inhomogeneity, e.g. Asplund 2005, Ludwig et al. 2009)

Gustafsson et al. (2008)

 $\sigma T_{\rm eff}^4$

Direct: interferometry (Hanbury Brown et al. 1974, van Belle & von Braun 2009)

- precise & accurate
- nearby stars (limited range)

Semi-Direct: InfraRed Flux Method

1.00 µn

0.45 μm

0.8 0.6

 $\mathcal{F}_{Bol}(\text{Earth}) =$

Direct: interferometry (Hanbury Brown et al. 1974, van Belle & von Braun 2009)

- precise & accurate
- nearby stars (limited range)

Semi-Direct: InfraRed Flux Method

 $\mathcal{F}_{Bol}(\text{Earth}) = \begin{pmatrix} \theta \\ \overline{2} \end{pmatrix}$

LD

 $\sigma T_{\rm eff}^4$

1.00 µr

0.45 *µ*m

Direct: interferometry (Hanbury Brown et al. 1974, van Belle & von Braun 2009)

- ✓ precise & accurate
- nearby stars (limited range)
- uniform disk

- precise
- ✓ ~ model-independent
- ✓ any star (photometry)
- reddening
- accuracy: absolute calibration

- ✓ precise
- ✓ any stars (spectra)
- model dependent (NLTE, inhomogeneity, e.g. Asplund 2005, Ludwig et al. 2009)

 $\mathcal{F}_{Bol}(\text{Earth}) = \left(\frac{\theta}{2}\right)^2 \sigma T_{\text{eff}}^4$

LD

Bigot et al. (2006)

1.00 µr

0.45 *µ*m

Direct: interferometry (Hanbury Brown et al. 1974, van Belle & von Braun 2009)

- precise & accurate
- nearby stars (limited range)
- uniform disk

Semi-Direct: InfraRed Flux Method

- precise
- ~ model-independent
- any star (photometry)
- reddening
- accuracy: absolute calibration

- precise
- any stars (spectra)
- model dependent (NLTE, inhomogeneity, e.g. Asplund 2005, Ludwig et al. 2009)

Direct: interferometry (Hanbury Brown et al. 1974, van Belle & von Braun 2009)

- ✓ precise & accurate
- nearby stars (limited range)
- uniform disk

Semi-Direct: InfraRed Flux Method

- ✓ precise
- ✓ ~ model-independent
- ✓ any star (photometry)
- reddening
- accuracy: absolute calibration

- ✓ precise
- ✓ any stars (spectra)
- **model dependent** (NLTE, inhomogeneity, e.g. Asplund 2005, Ludwig et al. 2009)

InfraRed Flux Method Blackwell et al. (1977, 1978, 1979)

InfraRed Flux Method Blackwell et al. (1977, 1978, 1979)

 $\frac{\mathcal{F}_{Bol}(\text{Earth})}{\mathcal{F}_{IR}(\text{Earth})} = \frac{\sigma T_{\text{eff}}^4}{\mathcal{F}_{IR}(\text{model})}$

InfraRed Flux Method

InfraRed Flux Method

IRFM: Pros & Cons

IRFM: Pros & Cons

IRFM: Pros & Cons

 $\mathcal{F}_{\lambda}(\text{Earth}) = \mathcal{F}_{\lambda}^{\text{std}}(\text{Earth}) 10^{-0.4(m_{\lambda} - m_{\lambda}^{\text{std}})}$

IRFM can accommodate any Teff Scale

We understand the differences

Which one do we choose?

Resolving different versions

photometry

 $\mathsf{T}_{\mathsf{eff}}$

Resolving different versions

photometry

 $\mathsf{T}_{\mathsf{eff}}$

Solar Twins

photometry

 $\mathsf{T}_{\mathsf{eff}}$

Solar Twins

T_{eff}

photometry

Solar Twins

photometry

~15-20 K

Angular diameters

 $\mathcal{F}_{\rm Bol} = \left(\frac{\theta}{2}\right)^2 T_{\rm eff}$

 $\Delta \theta = -0.6 \pm 1.7\% \longrightarrow \Delta T_{\rm eff} = 18 \pm 50 {\rm K}$

HST Spectro-photometry

HST Spectro-photometry

More Spectro-photometry

M. Bessell (private comm.)

Solar like stars: CMD

Solar like stars: field

Genera Concernation Survey

Nordström et al. (2004); Holmberg et al. (2007, 2009)

Revisiting the Geneva-Copenhagen Survey : Casagrande, Schönrich, Asplund, Ramírez, Meléndez, Bensby (2010)

Improved T_{eff} GCS 2**σ** 3σ 1 σ 400 200 Δ T_{eff} 0 -200 -400 5000 6000 4500 5500 6500 7000 T_{eff} (K)

Improved [Fe/H]

GCS

but see Meléndez et al. (2009), Ramírez et al. (2009) for the peculiar solar chemical composition

Something new under the Sun

Casagrande, Flynn & Bessell (2008)

Casagrande, Flynn & Bessell (2008)

M dwarfs angular diameters

M dwarfs angular diameters

Test on CM Draconis (Morales et al. 2009)

Fine Structure

- •222 GKM dwarfs
- $\boldsymbol{\cdot}\sigma$ parallaxes better 15%
- Hipparcos to remove variables/binaries

Casagrande, Flynn & Bessell (2008)

Fine Structure

Fine Structure

M dwarfs radii

Casagrande, Flynn & Bessell (2008)

• Casagrande et al. (2008)

Baines et al. (2008); Kervella & Fouqué (2008); Ségransan et al. (2003); Berger et al. (2006); Demory et al. (2009)

Gillon et al. (2007); Torres (2007)

• Casagrande et al. (2008)

Baines et al. (2008); Kervella & Fouqué (2008); Ségransan et al. (2003); Berger et al. (2006); Demory et al. (2009)

Gillon et al. (2007); Torres (2007)

Gillon et al. (2007); Torres (2007)

inflated radii in M dwarfs not only in eclipsing binaries, also single field stars

• Mixing Length (e.g. Chabrier et al. 2007)

• Magnetic activity (e.g. Mullan & MacDonald 2001; López-Morales & Ribas 2005)

• Opacity (e.g. Berger et al. 2006)

The Epilogue

• T_{eff} : FGK dwarfs

- understand the differences among scales
- settle the issue
 - solar twins
 - HST spectro-photometry
 - angular diameters

• chemical evolution Solar Neighbourhood

• T_{eff} : M dwarfs

- T_{eff} scale robust down to 3000 K
- discontinuity in obs. plane! → inflated radii ?!?