Quo vadís stellar evolutíon

Themes for this talk 1.Stellar evolution: present state 2.The multi-dimensional star 3.Application of stellar evolution

Falk Herwig University of Victoria Beautiful British Coloumbia

Wednesday, March 31, 2010

Extra-mixing aka "cool-bottom processing"

Several observations on the AGB as well as on the RGB indicate that a certain amount of mixing between the bottom of the giant convection envelope and the Hburning shell is needed, e.g.

- large [N/Fe] in C-rich extremely metal poor stars
- lower ¹²C/¹³C on the AGB then expected from standard models
- abundance correlations with L in RGB GC stars, e.g. C/N
- Li enhancements in RGB GC stars

Proposed scenarios include

- "Enhanced Extra Mixing in Low-Mass Red Giants: Lithium Production and Thermal Stability" Denissenkov & Herwig (2004)
- magnetic fields: "Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms?" Busso etal (2007)
- "Magneto-<u>Thermohaline</u> Mixing in Red Giants" Denissenkov etal (2009)
- followed finally by "Is Extra Mixing Really Needed in Asymptotic Giant Branch Stars?" Karakas etal (2010) [best reproduction of observations with enhanced ¹⁶O intershell abundance]

Deep Mixing of ³He: Reconciling Big Bang and Stellar Nucleosynthesis

Peter P. Eggleton,¹* David S. P. Dearborn,² John C. Lattanzio³

Low-mass stars, ~1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope ³He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of ³He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that ³He production in low-mass stars poses to the Big Bang nucleosynthesis of ³He.

Fig. 4. A color-coded plot of μ on a cross-section through the initial 3D model. The shell where the μ inversion occurs is the yellow region sandwiched between a yellow-green and a darker green. The inversion is at a radius of ~5 × 10⁷ m. The base of the SCZ is at ~2 × 10⁹ m, well outside the frame, and the surface of the star is at ~2 × 10¹⁰ m.

Fig. 5. The development with time of a contour surface of mean molecular weight near the peak in the blue curve of Fig. 3. The contour dimples, and begins to break up, on a time scale of only ~2000 s.

3

A&A 467, L15–L18 (2007) DOI: 10.1051/0004-6361:20077274 © ESO 2007

Letter to the Editor

Thermohaline mixing: a physical mechanism governing the photospheric composition of low-mass giants

C. Charbonnel^{1,2} and J.-P. Zahn³

¹ Geneva Observatory, University of Geneva, chemin des Maillettes 51, 1290 Sauverny, Switzerland

e-mail: Corinne.Charbonnel@obs.unige.ch

² Laboratoire d'Astrophysique de Toulouse et Tarbes, CNRS UMR 5572, Université Paul Sabatier Toulouse 3, 14 Av. E. Belin, 31400 Toulouse, France

³ LUTH, CNRS UMR 8102, Observatoire de Paris, 92195 Meudon, France e-mail: Jean-Paul.Zahn@obspm.fr

Received 9 February 2007 / Accepted 12 March 2007

ABSTRACT

Aims. Numerous spectroscopic observations provide compelling evidence for a non-canonical mixing process that modifies the surface abundances of Li, C and N of low-mass red giants when they reach the bump in the luminosity function. Eggleton and collaborators have proposed that a molecular weight inversion created by the ${}^{3}\text{He}({}^{3}\text{He}, 2p){}^{4}\text{He}$ reaction may be at the origin of this mixing, and relate it to the Rayleigh-Taylor instability. We argue that one is actually dealing with a double diffusive instability referred to as thermohaline convection and we discuss its influence on the red giant branch.

Methods. We compute stellar models of various initial metallicities that include thermohaline mixing, which is treated as a diffusive process based on the prescription given originally by Ulrich for the turbulent diffusivity produced by the thermohaline instability in stellar radiation zones.

Results. Thermohaline mixing simultaneously accounts for the observed behaviour of the carbon isotopic ratio and of the abundances of Li, C and N in the upper part of the red giant branch. It significantly reduces the ³He production with respect to canonical evolution models as required by measurements of ³He/H in galactic HII regions.

Conclusions. Thermohaline mixing is a fundamental physical process that must be included in stellar evolution modeling.

Key words. instabilities – stars: abundances – stars: interiors – hydrodynamics

THE ASTROPHYSICAL JOURNAL, 172:165–177, 1972 February 15 © 1972. The University of Chicago. All rights reserved. Printed in U.S.A.

THERMOHALINE CONVECTION IN STELLAR INTERIORS

ROGER K. ULRICH

Department of Astronomy, University of California, Los Angeles Received 1971 June 14; revised 1971 July 23 and 1971 September 7

ABSTRACT

A quantitative theory of mixing induced by an inverted gradient of mean molecular weight is presented. This theory is applied to three stellar problems, with the following results: (1) during ³He burning in a 2 M_{\odot} star the change of X_3 between the center and surface is 0.002; (2) the μ -mechanism proposed by Stothers and Simon is too short-lived to explain the β Cephei variables, and (3) after the initial ignition of ⁴He burning in a degenerate shell flash, the ⁴He core and the ¹²C shell mix on a time scale greater than 10⁶ years. The theory is checked by comparison with the laboratory experiment by Stommel and Faller quoted by Stern. The agreement is satisfactory. An important uncertainty in the theory is the ratio of length to width of a moving finger of matter.

VI. APPLICATIONS

a) ³He Burning (Case 1)

The entry for case 1 in the last column of Table 4 indicates that the mixing time is comparable to the time scale for depletion of ³He. Consequently, a detailed discussion of this case is necessary. I assume that the initial ³He abundance is large and ask the question: What is the difference in ³He abundance between the center and the surface of the star required to allow a uniform rate of depletion throughout?

Just prior to the arrival of a pre-main-sequence star on the ¹H burning main sequence, the reaction

$${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + 2{}^{1}\text{H} + 12.86 \text{ Mev}$$
 (26)

can temporarily halt gravitational contraction. Furthermore, this reaction converts two particles into three and thus decreases the mean molecular weight. After the maximum gradient of X_3 , the mass fraction of ³He, has been achieved, the thermohaline-convection mechanism discussed above permits X_3 to decrease at a uniform rate throughout the star. Thus,

$$\left(\frac{\partial X_3}{\partial t}\right)_{\text{actual}} = \left(\frac{\partial X_3}{\partial t}\right)_{\text{nuc}} + \left(\frac{\partial X_3}{\partial t}\right)_{\text{diff}} = \frac{L_*}{QM_*}$$
(27)

where Q is the energy released per unit mass of ³He which undergoes reaction (26); its value is 2.07×10^{18} ergs per g ³He consumed. Also, L_* and M_* are the total luminosity and mass.

COMPULSORY DEEP MIXING OF ³He AND CNO ISOTOPES IN THE ENVELOPES OF LOW-MASS RED GIANTS

PETER P. EGGLETON AND DAVID S. P. DEARBORN

Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551; ppe@igpp.ucllnl.org, dearborn2@llnl.gov

AND

JOHN C. LATTANZIO

Monash University, Mathematics Department, Clayton, Victoria 3168, Australia; john.lattanzio@sci.monash.edu.au Received 2007 January 17; accepted 2007 December 20

ABSTRACT

Three-dimensional stellar modeling has enabled us to identify a deep-mixing mechanism that must operate in all low-mass giants. This mixing process is not optional, and is driven by a molecular weight inversion created by the ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He}$ reaction. In this paper we characterize the behavior of this mixing, and study its impact on the envelope abundances. It not only eliminates the problem of ${}^{3}\text{He}$ overproduction, reconciling stellar and big bang nucleosynthesis with observations, but solves the discrepancy between observed and calculated CNO isotope ratios in low-mass giants, a problem of more than three decades standing. This mixing mechanism, which we call " $\delta\mu$ mixing," operates rapidly (relative to the nuclear timescale of overall evolution, ~10⁸ yr) once the hydrogen-burning shell approaches the material homogenized by the surface convection zone. In agreement with observations, Population I stars between 0.8 and 2.0 M_{\odot} develop ${}^{12}\text{C}/{}^{13}\text{C}$ ratios of 14.5 ± 1.5, while Population II stars process the carbon to ratios of 4.0 ± 0.5. In stars less than 1.25 M_{\odot} , this mechanism also destroys 90%–95% of the ${}^{3}\text{He}$ produced on the main sequence.

Subject headings: hydrodynamics — stars: abundances — stars: chemically peculiar — stars: evolution — stars: interiors — stars: Population II

Mass loss and opacities in AGB stars

An important new ingredient for AGB stellar evolution are new low-T opacities and - ideally matching mass loss rates, e.g. from hydrodynamic wind models (see Susanne Hoefner's presentation for details).

Goal: correctly and predictively describe the loss of the envelope when the star becomes C-rich through 3rd dredge-up, and the surface temperature evolution. Routinely employed now, e.g.:

- "New asymptotic giant branch models for a range of metallicities" Weiss & Ferguson, A&A, 2009.
- "Evolution and chemical yields of AGB stars: effects of low-temperature opacities" Ventura & Marigo, MN, 2009.
- "Molecular Opacities for Low-Mass Metalpoor AGB Stars Undergoing the Third Dredge-up" Cristallo etal, ApJ, 2007.
- "Low temperature Rosseland opacities with varied abundances of carbon and nitrogen" Lederer & Aringer, A&A 2009.
- "Asymptotic Giant Branch evolution at varying surface C/O ratio: effects of changes in molecular opacities" Marigo, A&A, 2002.

Mass loss and opacities in AGB stars

Mattson, Herwig, Hoefner, Wahlin, Lederer, Paxton

Wednesday, March 31, 2010

Rotation and magnetic fields

- Rotation in ID stellar evolution, e.g. Maeder & Meynet, Heger etal, Langer etal.
- plus magnetic fields, e.g. Taylor & Spruit dynamo, questioned by Zahn etal (2007)

Compare to observations in late phases:

- Rotation rates of neutron stars and white dwarfs
- Implications from nucleosynthesis, e.g. s-process in TP-AGB stars (Herwig etal 2003)

"Seismic evidence for the loss of stellar angular momentum before the white-dwarf stage" Charpinet, S.; Fontaine, G.; Brassard, P., Nature, 2009.

Rotation and magnetic fields

 Implications from nucleosynthesis, e.g. s-process in TP-AGB stars (Herwig etal 2003)

Wednesday, March 31, 2010

Rotation and magnetic fields

Fig. 1. Modelling strategy to study dynamical stellar evolution. The diagram presents timescales of the typical physical processes as a function of the angular resolution necessary to properly describe these processes. The angular resolution is expressed in terms of the *l* index of the spherical harmonics $Y_{l,m}(\theta, \phi)$. $l_{num} \approx 600$ indicates the maximum angular resolution (in term of spherical harmonics nodes) presently achieved in global numerical simulations.

"Secular hydrodynamic processes in rotating stars" Decressin et al (2009)

next generation ?!?

"A Model of Magnetic Braking of Solar Rotation That Satisfies Observational Constraints" Denissenkov (2010)

- improving on Charbonneau & MacGregor (1993)
- strongly anisotropic rotation-driven turbulent diffusion with dominating horizontal components
- numerical solution of the azimuthal components of the coupled momentum and mangetic induction equations in 2D

"Numerical Simulations of a Rotating Red Giant Star. I. Three-dimensional Models of Turbulent Convection and Associated Mean Flows" Brun & Palacios, 2009

Stellar evolution in the early universe

The ratio of the mixing time scale and the reaction time scale is called the Damköhler number:

$$D_{\alpha} = \frac{\tau_{\rm mix}}{\tau_{\rm react}} \; .$$

Dimotakis, P. E. 2005, Annu. Rev. Fluid Mech., 37, 329

- $D_{\alpha} \ll 1$: fully mixed burning, MLT appropriate
- $D_{\alpha} \sim I$: combustion regime, MLT and ID spherical symmetry assumption inappropriate
- combustion in low- and zero-metallicity stars common, inlcuging both lowmass and massive, rotating and non-rotating stars
- examples of papers which have not observed this physics requirement: e.g. Herwig etal 1999, Herwig 2001 plus ca. 10-20 since then.
- check our poster and arXiv:1002.2241 for details

A new, modern, modular, open, fast community stellar evolution code

A new, modern, modular, open, fast community stellar evolution code

A new, modern, modular, open, fast community stellar evolution code

This plot is a hint of the sort of experiments in stellar astrophysics that MESA will support. It shows the state of a 4 Msun star during a second ascent of the Red Giant Branch computed with MESA modules. Included are the HR track, the time history of the central temperature vs density, and the profile of the star in the temperature and density plane with the background colored to show the pressure.

Overview

Frank Timmes

Lorne Nelson

Aaron Dotter

Jon Tomshine

tioga for plots

MESA at sourceforge

Don VandenBerg Steinn Sigurðsson Raphael Hirschi

Pierre Lesaffre Falk Herwig

The software project MESA, Modules for Experiments in Stellar Astrophysics, aims to provide state-of-the-art, robust, and efficient open source modules, usable singly or in combination for a wide range of applications in stellar astrophysics. It includes modules for various aspects of the physics, such as nuclear networks, opacities, and

Wednesday, March 31, 2010

A new, modern, modular, open, fast community stellar evolution code

MESA acknowledgements:

MESA was written from scratch by **Bill Paxton** (KITP/UCSB) with major support from **Lars Bildsten** as well as the following individuals:

- ★ Frank Timmes
- ★ Lorne Nelson
- ★ Pierre Lesaffre
- ★ Falk Herwig

★ Aaron Dotter

- ★ Don VandenBerg
- ★ Steinn Sigurðsson
- ★ Raphael Hirschi
- ★ Jon Tomshine
- ★ Ed Brown

University of Victoria

Some features:

 versatile compilation of EOS, allowing VLM stars, brown dwarfs, degenerate stars

- full coupling of mixing, burning and structure operators log
- both hydrodynamic and hydrostatic option
- range of networks, including those needed for massive star collapse
- convection MLT (different versions), overshooting, Ledoux criterion, semiconvection
- mass transfer, accretion, mass loss, binary stars (Roche Lobe overflow)
- several atmosphere options, including atmosphere tables, e.g. from Phoenix code
- verified (as in code comparison with established research codes) for low mass stars, the sun, advanced phases (AGB), massive stars, including nucleosynthesis predictions
- passed Stellar Code Calibration (Achim Weiss etal) project test cases
- individual module level verification for eos, kap, atm, mlt by running in DSEP code and EVOL code
- diffusion/gravitational settling via Thoul et al. (1994); recently verified against VandenBerg's code with diffusion treated according to Michaud & Proffit.
- pulsation module (LAWE according to Jørgen Christensen-Dalsgaard's ADIPLS, 1997)
- thermohaline mixing
- compatible with NuGrid nucleosynthesis codes.

NuGríd: Nucleosynthesis for a wide range of (M,Z)

A new, parallel, comprehensive nucleosynthesis code for large-scale post-processing computations

The PPN code

NuGríd: Nucleosynthesis for a wide range of (M,Z) Application examples

$25 M_{sun}$ nucleosynthesis

University of Victoria

Wednesday, March 31, 2010

NuGríd: Nucleosynthesis for a wide range of (M,Z) Application examples

2.0M_{sun} nucleosynthesis

Cycle=0032010, Mass=0.189E+01, Age=0.153E+10, T_{9, max}=0.183E+00, proc. shells=853

NuGríd: Nucleosynthesis for a wide range of (M,Z) Application examples

$2.0M_{sun}$ nucleosynthesis

NuGríd: Nucleosynthesis for a wide range of (M,Z)

NuGrid acknowledgements:

- ★ R. Hirschi, M. Bennett (Keele University, UK)
- ★ F. Herwig, M. Pignatari, William Hillary, Debra Richman, Aaron Dotter (University of Victoria, BC, Canada)
- ★ C. L. Fryer, G. Rockefeller, A. Hungerford, Aaron Courture (Los Alamos National Laboratory, NM, USA)
- ★ F. X. Timmes, P.A. Young (Arizona State University)
- ★ Claudia Travaglio (Observatory of Torino, INAF)
- ★ Bill Paxton (KITP, UC Santa Barbara)
- ★JINA

Introduction The NuGrid Web Page The NuGrid SEE library The NuGrid mailing lists Links related to the NuGrid collaboration

Introduction

The NuGrid collaboration works on Computational Nuclear Astrophysics and Stellar Physics to characterize the Origin of the Elements for range of conditions.

The NuGrid Web Page

Please visit the NuGrid web site, which is a wiki-like Plone page. We use it for our regular collaborative exchange. The internal pages relogin password. But there is already some public information.

The NuGrid SEE library

We are in the process of building up the NuGrid stellar evolution and explosion SEE library. The library already contains a large number low-mass and massive stellar evolution tracks. Since we are still in the process of working on the publication the library is still password protected. However, please contact us if you would like to have pre-release access to the library.

The NuGrid mailing lists

We have two mailing lists:

- NuGrid list: please sign up to this list. It is meant to inform anyone interested about the progress and development of the NuGrid You will receive the occasional message about new data releases, releases of public codes, etc. We will at some point make the publicly available. So, we hope that over time this will develop into a great place to ask questions, and search for answers.
- NuGrid-team list: This is a list only for internal collaboration use.

Links related to the NuGrid collaboration

- Joint Institute for Nuclear Astrophysics an NSF Physics Frontier Center
- MESA stellar evolution and MESA plone
- LCSE at the University of Minnesota
- Raphael Hirschi's home page and his group
- Claudia Travaglio and B²FH in Italy
- Frank Timmes' cococubed
- Falk Herwig's web page
- NuGrid on ADS

NuGrid Collaboration, Last update: Sat Nov 21 11:55:57 PST 2009 , Back to NuGrid web page

☆ 🔻) - (🖸 🕻 Google

Convection (vs. secular instabilities) of the stellar interiors:

α_{MLT} is different in different

convection zones

- i. "A calibration of the mixinglength for solar-type stars based on hydrodynamical simulations", Ludwig, Freytag & Steffen, A&A (1999)
- ii. "Abundances in intermediatemass AGB stars undergoing third dredge-up and hot-bottom burning" McSaveney, J. A.; Wood, P. R.; Scholz, M.; Lattanzio, J. C.; Hinkle, K. H., MN (2007) α_{MLT} ~ 2.3 - 2.6

 iii. "Three-dimensional Simulations of Turbulent Compressible Convection", Porter & Woodward (2000) α_{MLT} ~ 2.68

Stellar interior simulations:

i. massive stars: "Turbulent convection in stellar interiors" Meakin & Arnett (2007)

ii."The core helium flash revisited" Mocák etal A&A (2009)

2D entropy fluctuations (2400x800), realistic heating rate Courant time scale at this resolution: ~3*10⁻³sec -> 1.6M cycles

Ic0gi: time=4000 s v_{∆rms,max}=14.4 km/s

 $k\text{-}\omega$ diagrams for various heights of benchmark run lcOgg

He-shell flash convection

i. 2D and 3D planeparallel box-in-a-star (Herwig etal 2006)

University of Victoria

Wednesday, March 31, 2010

Next generation He-shell flash convection

i. 3D 4π star-in-a-box simulations (e.g. Herwig etal 2010, poster outside) ii.compressible gas dynamics PPM code Paul Woodward (http:// www.lcse.umn.edu) iii.high accuracy PPB advection scheme iv.2 fluids, with individual, realistic material densities v.576³ cartesian grid, simulated time total 60ks vi.Ma ~ 0.03, IIH_p in conv. zone

abundance of H-rich material entrained from above into convection zone at $\sim 20 \text{ks}$

University of Victoria

http://www.lcse.umn.edu/index.php?c=movies

 $3D 4\pi$ star-in-a-box simulations

How expensive is it? 576³ for 60ks (several M cycles):

- ***** 18*8*10*24 ~ 34,000 CPU hrs
- * factor 2 up in resolution = factor 8 in effort: ~270,000 CPU hrs for 1152³
- * another factor 2 up: 2.2M CPU hrs
- * another one up 17M CPU hrs (4608³, corresponding to $\Delta r=6$ km, $\Delta r_{eff}=3$ km)

How does this compare to availability?

- * 256 cluster: 2.2M CPU hrs
- * regional facilities: > dozen CPU hrs
- * peta-scale computing now deployed: ~1,500 M CPU hrs

Applications of stellar evolution

- stellar populations
- first stars/near-field cosmology
- hígh-z Universe, especially AGB stars (e.g. how well can we describe C-star formation?)
- grains, nucleosynthesis
- SN progenitors

A Constraint on Z_{\odot} From Fits of Isochrones to the Color-Magnitude Diagram of M 67

Don A. VandenBerg¹, Bengt Gustafsson², Bengt Edvardsson², Kjell Eriksson², and Jason Ferguson³

VandenBerg etal. 2007

Applications of stellar evolution

Applications of stellar evolution

• hígh-z Universe, especially AGB stars (e.g. how well can we describe C-star formation?)

