The Pisa pre-MS tracks and isochrones

A rich database covering a large range of Z, Y, mass and age values

Pier Giorgio Prada Moroni

Emanuele Tognelli Scilla Degl'Innocenti Physics Department - University of Pisa

Table 4. Summary of the models available in the database.

		$\mathbf{X}_D = 4.0 \cdot 10^{-5}$							$\mathbf{X}_D = 2.0 \cdot 10^{-5}$		
		a = 1.68			a = 1.2, 1.9				a = 1.68		
	$Y_p =$	0.230 0.248		0.230	0.248			0.230	0.2	.48	
	$\Delta Y / \Delta Z =$	2	2	5	2	2	5		2	2	5
	2.0.10-4	0.230	0.248	0.250	0.230	0.248	0.250		s		С. — Э
	$1.0 \cdot 10^{-3}$	0.232	0.251	0.254	0.232	0.251	0.254				
	$2.0 \cdot 10^{-3}$	0.234	0.253	0.259	0.234	0.253	0.259				
	$3.0 \cdot 10^{-3}$	0.236	0.254	0.263	0.236	0.254	0.263	\$ 8	. 3		ана страна (1996) Страна (1996)
	$4.0 \cdot 10^{-3}$	0.238	0.256	0.269	0.238	0.256	0.269				
Z:	$5.0 \cdot 10^{-3}$	0.240	0.258	0.273	0.240	0.258	0.273				
	$6.0 \cdot 10^{-3}$	0.242	0.260	0.279	0.242	0.260	0.279				
	7.0 · 10 ⁻³	0.244	0.262	0.283	0.244	0.262	0.283		53		
	$8.0 \cdot 10^{-3}$	0.246	0.265	0.289	0.246	0.265	0.289		0.246	0.265	0.289
	$1.0 \cdot 10^{-2}$	0.250	0.268	0.299	0.250	0.268	0.299	1	0.250	0.268	0.299
	$1.25 \cdot 10^{-2}$		2	· · · · · · · · · · · · · · · · · · ·	2			8	(0.274	
	$1.5 \cdot 10^{-2}$	0.260	0.278	0.323	0.260	0.278	0.323		0.260	0.278	0.323
	$1.75 \cdot 10^{-2}$									0.284	
	$2.0 \cdot 10^{-2}$	0.270	0.288	0.349	0.270	0.288	0.349		0.270	0.288	0.349
	$2.25 \cdot 10^{-2}$									0.298	24
	$3.0 \cdot 10^{-2}$	0.290	0.308	0.398	0.290	0.308	0.398		0.290	0.308	0.398

- 43 stellar mass values 0.2-7 M_o for α : 1.68, 1.9
- 26 stellar mass values 0.2-2 M_o for α : 1.2
- 1 set with solar composition (Z=0.0137 Y=0.2529)

more than 4000 stellar tracks

• Pre-MS isochrones **1-100 Myr** for each set

• The database is available at the url:

http://astro.df.unipi.it/stellar_models/

Tognelli, Prada Moroni, Degl'Innocenti 2010 (Astronomy & Astrophysics, submitted)

Dependence on Z and Y

 The location in the HR diagram of pre-MS tracks *strongly* depends on chemical composition, mainly on *Z*

Dependence on Z and Y

Dependence on Z and Y

- When comparing data with theoretical pre-MS tracks, one must use models with the *same* metallicity of the observed stars
- An *error in [Fe/H]* translates in a shift in T_{eff} and hence in an error in the *inferred mass and age*
- This is the reason why we provide a database of models with a very fine grid of Z and Y

Pisa pre-MS models: tracks

Pisa pre-MS models: isochrones

3,7

3.7

3.6

3.5

3,6

3.5

FRANEC code

• FRANEC evolutionary code (Chieffi & Straniero 1989, Ciacio et al. 1997, Prada Moroni & Straniero 2002, Degl'Innocenti et al. 2008, Valle et al. 2009)

 A full-evolutionary Henyey code able to follow the evolution of stars from the pre-MS to the WD phase

Pisa Models: input physics

 theoretical stellar models are as accurate and reliable as the input physics adopted in the computation

• the most updated physical ingredients available in the literature

Pisa Models: EOS

- EOS plays a crucial role, in particular in the convective regions of low mass stars, which are almost adiabatic
- *T_{eff}* and *R* of low-mass stars are determined by the adiabatic gradient, i.e. EOS
- OPAL EOS, release 2006 (Rogers et al. 1996, Rogers & Nayfonov 2002)
- FreeEOS, release 2008 (Irwin 2004)

Pisa Models: opacity

- Log T(K) > 4.2: OPAL, release 2006 (Iglesias & Rogers 1996)
- Log T(K) < 4.2: Ferguson et al. (2005)

 The location in the HR diagram of low-mass stars depends strongly on the molecular radiative opacity

Pisa Models: boundary conditions

P(τ_{ph}, T_{eff}, g, [Fe/H]) and *T*(τ_{ph}, T_{eff}, g, [Fe/H]) at τ_{ph} provided by detailed, *non-grey* atmospheric models which solve the full radiative transport equation

• τ_{ph} = 10

Pisa Models: boundary conditions

We adopt the model atmospheres by:

3000 K < T_{eff} < 10000 K: Brott & Hauschildt (2005)

10000 K< T_{eff}< 50000 K: Castelli & Kurucz (2003)

Pisa Models: convection

 Mixing length theory (Bohm-Vitense 1968), in which the average convective efficiency depends on

$I=\alpha H_p$

 α is a **free** parameter to be calibrated with observations

The usual approach is the *solar calibration* α= 1.68

Pisa Models: MLT calibration

- The "solar calibration" does not rely on a physical argument, since there is no reason to expect that the efficiency of convection is the same for stars of different masses and in different evolutionary stages (D'Antona & Mazzitelli 1994, 1998, Montalban et al. 2004)
- It is possible to obtain *many* solar models with significantly *different* pre-MS locations and shapes

Pisa Solar Model

Pisa Models: MLT calibration

At present, the value of α represents a source of uncertainty

We computed models for 3 values of α: 1.2,
1.68 (solar) and 1.9

Pisa Models: convection

Pisa Models: convection

Comparison with data

Comparison with data

- Covino et al. 2004
- $M_1 = 1.27 \pm 0.01 M_o$
- $M_2 = 0.93 \pm 0.01 M_o$

See e.g. poster by *Gennaro et al.*

• The database is available at the url:

http://astro.df.unipi.it/stellar_models/

Tognelli, Prada Moroni, Degl'Innocenti 2010 (Astronomy & Astrophysics, submitted)

Pisa Models: solar calibration

Pisa Models: solar calibration

Pisa Models: D-burning

- The value of X_D affects only the very early evolution
- After a few Myr the isochrones converge

•
$$X_D = 4x10^{-5}$$
 for all stars

•
$$X_D = 2 \times 10^{-5}$$
 for Z>0.007

Pisa Models: D-burning

• **Cosmological** D abundance:

 $3.8 \times 10^{-5} \le X_D \le 4.5 \times 10^{-5}$

(Cyburt et al. 2004, Steigman et al. 2007, Pettini et al. 2008)

- As stellar generations follow each other, D is *astrated*, since stars are net destroyers of D
- *Solar neighbourhood* D abundance:

$$X_{\rm D} \approx 2.5 - 3 \times 10^{-5}$$

(Geiss & Gloeckler 1998, Vidal-Madjar et al. 1998, Linsky 1998, Linsky et al. 2007, Steigman et al. 2007)

Pisa Models: boundary conditions

Pisa Models: boundary conditions

- Grey BCs provide hotter traks for very low-mass stars.
- For M> 1.2 M_o the ZAMS models are independent of BCs, since convection remains below the photospere and molecules are stable only in the outermost layers.

Pisa Solar Model

	Y _{ini}	Z _{ini}	Y _{sup}	Z _{sup}	α	R _{cz}
KS66	0.2532	0.0137	0.2222	0.0126	1.97	0.7294
СК03	0.2532	0.0137	0.2222	0.0126	1.75	0.7295
BH05	0.2533	0.0137	0.2221	0.0126	1.68	0.7295

Other standard solar models

	Y _{ini}	Z _{ini}	Y _{sup}	Z _{sup}	α	R _{cz}
BS05	0.2614	0.0140	0.2300	0.0125	1.96	0.7289
GZ06	0.2570	0.0135	0.2273	0.0124	1.99	0.7306
S09	0.2593	0.0139	0.2292	0.0126	2.10	0.7280

Pisa Models: nuclear network

- The current version of FRANEC follows the burning of 26 elements
- Initial abundances of ³He, ⁶Li, ⁷Li, ⁹Be, ¹¹Be from Geiss & Gloeckler (1998)
- Nuclear cross section from NACRE (Angulo et al. 1999)
- ¹⁴N(p,γ)¹⁵O from LUNA *(Marta et al. 2008)*

Table 3. Summary of the main physical inputs adopted by the codes selected for the comparison with the present results.

Code:	ÉOS	Radiative Opacity	Boundary Conditions
BCAH98	Saumon, Chabrier & VanHorn 1995	OPAL96;	non-grey
	(SCAHA2)	Alexander & Ferguson (1994)	Hauschildret al. (1999)
CESAM08	OPALOS	OPAL96;	grey atmosphere
		Alexander & Ferguson (1994)	
CLES07	OPAL01	OPAL 96:	erev atmosphere
		Alexander & Ferguson (1994)	<i>a-1</i> ,
DM97	OPAL96;	OPAL93;	grey atmosphere
	MHD88	Alexander & Ferguson (1994)	N 10 10
DSEP08	Chaboyer & Kim (1995);	OPAL96;	non-grey
	Írwin (2004)	Feguson et al. (2005)	Hauschildt et al. (1999); Castelli & Kurucz (2003)
DVD09	OPALOS;	OPAL.96;	non-grey
	SCVH95	Feguson et al. (2005)	Heiter et al. (2002); All ard & Hauschildt (1997)
SD00	Pols et al. (1995)	OPAL.96;	non-grey
	energie engewonsthe A. Michael C.	Alexander & Ferguson (1994)	
YY01	OPAL96:	OPAL 96:	erev atmosphere
	Chaboyer & Kim (1995)	Alexander & Ferguson (1994)	<i>σ-</i> ,

Tognelli, Prada Moroni & Degl'Innocenti 2010

- **16** values of metallicity, Z=0.0002 0.03
- 3 values of the initial Y for each Z

$$\mathbf{Y} = \mathbf{Y}_p + \frac{\Delta \mathbf{Y}}{\Delta \mathbf{Z}} \mathbf{Z}$$

- 2 values of Y_p: 0.230 and 0.248
- 2 values of $\Delta Y / \Delta Z$: 2 and 5
- 2 values of the initial X_D for Z>0.007
- **3** values of α: 1.2, 1.68, 1.9

Pisa Models: initial conditions

- Not realistic since it neglects the protostellar phase
- However, once the main accretion phase is finished, the evolution should *quickly converge* to that of standard hydrostatic models (Stahler 1983, Palla & Stahler 1999).

Fig. 1. PMS evolutionary tracks for stars of mass $1 M_{\odot} \leq M_* \leq 5 M_{\odot}$ (solid lines). Evolutionary lifetimes are marked on each curve. The heavy solid line represents the "birthline". For comparison, the dashed lines give the standard tracks as computed by Iben (1965).

Pisa Models: initial conditions

