Forming Solar Mass Stars: An Overview of Young Stellar Objects

Michiel Hogerheijde Leiden Observatory

How do Solar Mass stars form?

- How do stars of ~1 M_{sun} form?
 - Masses from 0.08 M_{sun} to ~8 M_{sun}
 - Range of birth environments
 - Prospects for planet formation
- How did the Sun form?
 - Relics of the specific birth environment of the Sun
 - Imprint on the Solar System
- What can we learn from high angular resolution observations?

Route

- From interstellar clouds to the Initial Mass Function
- Properties of prestellar cores
- The standard picture of isolated, low-mass star formation
- Structure and classification of YSOs
- Protostellar feedback on YSOs: heating, shocks, and photo-processes
- Formation of accretion disks
- Characteristics and evolution of planet-forming disks
- Multiplicity and clustered star formation
- Conclusion: The formation of Solar Mass stars

From interstellar clouds to the Initial Mass Function

From interstellar clouds to the Initial Mass Function

Is this the right way to get structure? (cf dendograms)

From interstellar clouds to the Initial Mass Function

Vázquez-Semadeni et al. 2009

> NH₃ Perseus B5: Pineda et al. 2010

Properties of prestellar cores: density, temperature

Galli et al. 2002

Properties of prestellar cores: dynamics

8.5

RA OFFSET (arc sec)

Near-thermal line widths

Little / no rotation

Extended inward motions 0.05-0.1 km s⁻¹: contraction

Oscillations?

Lee et al. 2001; Lada et al 2003; Bergin & Tafalla 2007

Properties of prestellar cores: chemistry

Molecules freeze out in dense and cold interior.

 N_2H^+ may be a 'late-depletor'.

Deuterated molecules are enhanced: e.g., H₂D⁺

Bergin & Tafalla 2009; based on Bergin et al. 2002; Bianchi et al. 2003; Caselli et al. 2003; van der Tak et al. 2005; Vastel et al. 2004

The 'standard' model of isolated star formation

These classes can be placed in an intuitive evolutionary ordering.

Lada (1987): pre-main sequence stars and infrared sources in star forming regions can be classified according to their 2.2-10/25 µm slope: Class I, II, III

Later a Class 0 was added (André et al. 1993); sometimes a 'Flat' class is introduced between Classes I and II.

Lifetimes and statistics of YSO classes

Evans et al

The st re of \ Stell: jects

Dust continuum and molecular-line measurements well fit by Shu model (e.g., Hogerheijde & Sandell 2000)

The structure of Young Stellar Objects: envelope vs disk

- compact mm emission toward ~all Class 0 and I objects
- $M_{disk} = 0.05-0.1 M_{sun}$ (with scatter!)
- M_{disk} does not change with Class
- M_{envelope} does change with Class from ~1 M_{sun} in Class 0 to ≤ 0.1 M_{sun} in Class I.
- \rightarrow disks form early

PROSAC: Jørgensen et al. (2007, 2009)

The structure of Young Stellar Objects: kinematics

PROSAC: Jørgensen et al. (2007, 2009)

The structure of Young Stellar Objects: magnetic fields

Polarization of thermal dust emission in NGC 1333 IRAS 4 matches theoretical expectations (e.g., Galli et al. 2006):

- gravity overcomes magnetic support
- field lines drawn in by collapsing gas
- → hourglass shape

The structure of Young Stellar Objects: chemistry

Pre-stellar cores: – undepleted outer regions – depletion in cold & dense interior

Class 0:

undepleted outer skin

depleted interior

 – evaporation of (altered) species in small, warm central region: complex organics

Class I:

- undepleted outer skin
- narrow shell with depletion
- undepleted in large, warm inner region

Jørgensen et al. (2005)

Protostellar feedback: outflows

Protostellar feedback: outflows

Protostellar feedback: outflows

WISH (van Dishoeck, PI)

...and provide a path for ultraviolet photons to reach into the envelope... (Spaans et al. 1995)

van Kempen et al. (2009)

The formation of accretion disks

⁻⁻⁻⁻⁻⁻

The formation of accretion disks

Brinch et al. (2007a,b)

The formation of accretion disks

Chemical signatures of the disk/ envelope accretion shock.

Warm and cold water vapor around NGC1333 IRAS4B

Methanol around L1157

Velusamy et al. (2002)

Jørgensen et al. (2010)

Characteristics and evolution of protoplanetary disks

Characteristics and evolution of protoplanetary disks

Characteristics and evolution of protoplanetary disks

Multiplicity...

20-30% of T Tauri stars are in multiple systems (e.g, Koehler 2001; Leinert et al. 1993; Ghez et al. 1993; Reipurth & Zinnecker 1993; Simon et al.1995)

Many YSOs also harbor multiple systems

SMA observations of

...and clustered star formation

Turbulence → filemantry clouds → Clump Mass Function ~ IMF

• Prestellar cores: ~Bonnor-Ebert spheres. Dynamics?

Turbulence → filemantry clouds → Clump Mass Function ~ IMF

• Prestellar cores: ~Bonnor-Ebert spheres. Dynamics?

• Evolution: Class $0 \rightarrow I \rightarrow II$ (T Tauri star) $\rightarrow III$ (pre-main sequence star)

• Inside-out collapse (Shu 1977) gives a reasonable description of Class 0,I

• Velocity dominated by infall; some rotation + contribution from outflow

• Chemical evolution: depletion \rightarrow evaporation; outflow shocks; UV processing

Turbulence → filemantry clouds → Clump Mass Function ~ IMF

• Prestellar cores: ~Bonnor-Ebert spheres. Dynamics?

• Evolution: Class $0 \rightarrow I \rightarrow II$ (T Tauri star) $\rightarrow III$ (pre-main sequence star)

• Inside-out collapse (Shu 1977) gives a reasonable description of Class 0,I

• Velocity dominated by infall; some rotation + contribution from outflow

Chemical evolution: depletion → evaporation; outflow shocks; UV processing

• Disks seem to form early in the Class 0 phase with 0.05–0.1 M_{sun} ~ constant

• What is the nature of these early disks? Are they in Kepler rotation?

Turbulence → filemantry clouds → Clump Mass Function ~ IMF

• Prestellar cores: ~Bonnor-Ebert spheres. Dynamics?

• Evolution: Class $0 \rightarrow I \rightarrow II$ (T Tauri star) $\rightarrow III$ (pre-main sequence star)

• Inside-out collapse (Shu 1977) gives a reasonable description of Class 0,I

• Velocity dominated by infall; some rotation + contribution from outflow

Chemical evolution: depletion → evaporation; outflow shocks; UV processing

• Disks seem to form early in the Class 0 phase with 0.05–0.1 M_{sun} ~ constant

• What is the nature of these early disks? Are they in Kepler rotation?

Most T Tauri stars have disks, in Kepler rotation

• Inside disks, grains grow & settle, gas chemistry evolves, gaps may open

Outlook

- ALMA
 - study YSOs in clustered regions like we have in isolation
 - separate disks from envelopes
- Herschel
 - access the FIR range, where key species have transitions: energetics
- E-ELT, JWST
 - MIR spectroscopy of gas close to the star (star/disk connection)

Major reviews

- Evans 1999 ARA&A, 37, 311
- McKee & Ostriker 2007 ARA&A, 45, 565
- Bergin & Tafalla 2007 ARA&A, 45, 339
- Reipurth, Jewitt & Keil 2006, Protostars & Planets V (Univ Arizona Press)
- Evans et al. 2009, ApJS, 181, 321