STAR FORMATION HISTORY FROM RESOLVED STARS IN GALAXIES UP TO VIRGO

L. Greggio, R. Falomo, S. Zaggia, D. Fantinel, M. Uslenghi (INAF, OAPd & IASF-Mi)

Elliptical Galaxy Centaurus A

ESO for the Public

THE SPECIFIC PRODUCTION

THE SPECIFIC PRODUCTIONS

Stellar evolution theory provides the specific productions for any isochrone

$$\delta n_j = f(age, comp.)$$

star counts along an isoch. M_{SP} @ (age,comp.) perfom the exercise along different isochrones

STAR FORMATION HISTORY

THE SYNTHETIC CMD METHOD

Minimize distance between the stellar density across the observed CMD and a model CMD

Different regions on the CMD have different diagnostic power

Best sensitivity to (old) ages is for MS Turn Off

Boxes along the RGBs include a wide range of ages

A BIT OF HISTORY

Sextans B MOD=25.6 from Tosi et al. 1991 data from 2.2m ESO-MPI t_{exp} = 2^h (B) 1^h (V)

TO DERIVE THE SFH FROM THE CMD OF RESOLVED STELLAR POPULATIONS WE NEED

DEPTH & PHOTOMETRIC ACCURACY

BOTH ARE CRUCIAL

PERSPECTIVES FOR ELT & JWST ARE EXTREMELY INTERESTING BECAUSE OF THEIR LARGE COLLECTING AREAS AND HIGH RESOLUTION

m	<section-header></section-header>	<section-header></section-header>	
BACKGROUND AB MAGS @ 2.1 µm	~ 15	~ 23	
PIXEL SCALE	~ 3 mas	~ 32 mas	
SPATIAL RESOLUTION (FWHM, mas) @ 2.1 µm	~ 10 mas	~ 90 mas	
FIELD OF VIEW	53" x 53"	2'.2 x 2'.2	

5hrs, 5σ	J _{AB}	H _{AB}	K _{AB}
Imaging	30.8	30.8	29.8
Imaging with advanced filters	31.3	31.3	30.1

SFH TRACERS

Reasonable exposure: 5 hours integration

Reasonable S/N : 5 - 10

Photometric Accuracy

In crowded fields photometry is affected by blending and incompleteness

limiting magnitudes will be brighter S/N at given magnitude will be lower

Photometry performed via PSF fitting: the narrower the PSF the easier for the package to recognize stars, and measure them

TWO SPECIFIC SCIENCE CASES

A DISK GALAXY IN THE CENTAURUS GROUP

MOD = 28.3 5 hr EXPOSURE IN I J K DERIVE THE STAR FORMATION HISTORY

W. Keel, KPNO,4m Mayall Telescope

AN ELLIPTICAL GALAXY IN THE VIRGO CLUSTER
 MOD = 31.3 5 hr EXPOSURE IN I J K
 DETERMINE THE METALLICITY
 DISTRIBUTION OF THE STARS

J.C. Cuillandre, Hawaiian Starlight, CFHT

STAR FORMATION HISTORY IN DISK GALAXIES

DISK GALAXY IN THE CENTAURUS GROUP

DISK GALAXY IN THE CENTAURUS GROUP

$$M_{B,GAL} = -20$$

$$R_{e} = 3 \text{ Kpc}$$

$$r/R_{e} = 0$$

$$MOD = 28.3$$

$$\mu_{B} = 21.07$$

$$\mu_{I} = 19.8$$

$$\mu_{J} = 18.9$$

$$\mu_{K} = 18.1$$

$$FoV = 12'' \times 12''$$

$$L_{B} = 17.5 \ 10^{6} \ L_{B,0}$$

$$L_{I} = 15.7 \ 10^{6} \ L_{I,0}$$

$$L_{J} = 23.6 \ 10^{6} \ L_{J,0}$$

$$L_{K} = 35.2 \ 10^{6} \ L_{K,0}$$

$$M_{SF} = 26.6 \ 10^{6} \ M_{0}$$

$$\begin{split} M_{B,GAL} &= -20 \\ R_e &= 3 \text{ Kpc} \\ r/R_e &= 0 \end{split} \\ MOD &= 28.3 \\ \mu_B &= 21.07 \\ \mu_I &= 19.8 \\ \mu_J &= 18.9 \\ \mu_K &= 18.1 \end{split} \\ FoV &= 3'' \times 3'' \\ L_B &= 1.1 \ 10^6 \ L_{B,O} \\ L_I &= 0.98 \ 10^6 \ L_{I,O} \\ L_J &= 1.5 \ 10^6 \ L_{J,O} \\ L_K &= 2.2 \ 10^6 \ L_{K,O} \\ M_{SF} &= 1.7 \ 10^6 \ M_O \end{split}$$

QUALITY OF THE PHOTOMETRY

Checked on 136307 objects detected in I, J and K

METALLICITY DISTRIBUTION IN ELLIPTICAL GALAXIES

e.g.: Rejkuba et al 2005. A stellar field in the halo of Centaurus A

METALLICITY DISTRIBUTION IN ELLIPTICAL GALAXIES

ELLIPTICAL GALAXY IN THE VIRGO CLUSTER

$$\begin{split} M_{B,GAL} &= -22 \\ R_e = 10 \text{ Kpc} \\ r/R_e &= 0.5 \end{split}$$

$$\begin{split} MOD &= 31.3 \\ \mu_B &= 21.6 \\ \mu_I &= 19.6 \\ \mu_J &= 18.8 \\ \mu_K &= 17.9 \end{split}$$

$$\begin{split} FoV &= 3'' \times 3'' \\ L_B &= 10.6 \ 10^6 \ L_{B,0} \\ L_I &= 17.8 \ 10^6 \ L_{I,0} \\ L_J &= 26.8 \ 10^6 \ L_{J,0} \\ L_K &= 39.7 \ 10^6 \ L_{K,0} \\ M_{SF} &= 75.3 \ 10^6 \ M_0 \end{split}$$

QUALITY OF THE PHOTOMETRY

Checked on 14729 objects detected in I, J and K

INPUT LF OUTPUT LF

30

28

INPUT AND OUTPUT CMDs

METALLICITY DISTRIBUTION FROM THE CMD

THE METALLICITY BINS ARE SEPARATED IN COLOR IN SPITE OF THE PHOTOMETRIC ERROR

ELLIPTICAL GALAXY IN THE VIRGO CLUSTER

$$\begin{split} M_{B,GAL} &= -22 \\ R_e &= 10 \text{ Kpc} \\ r/R_e &= 0.5 \end{split}$$

$$\begin{split} MOD &= 31.3 \\ \mu_B &= 21.6 \\ \mu_I &= 19.6 \\ \mu_J &= 18.8 \\ \mu_K &= 17.9 \end{split}$$

$$\begin{split} FoV &= 3'' \times 3'' \\ L_B &= 10.6 \ 10^6 \ L_{B,o} \\ L_I &= 17.8 \ 10^6 \ L_{I,o} \\ L_J &= 26.8 \ 10^6 \ L_{J,o} \\ L_K &= 39.7 \ 10^6 \ L_{K,o} \\ M_{SF} &= 75.3 \ 10^6 \ M_o \end{split}$$

ELLIPTICAL GALAXY IN THE VIRGO CLUSTER

A LOWER SURFACE BRIGHTNESS REGION

$$\begin{split} M_{B,GAL} &= -22 \\ R_e = 10 \text{ Kpc} \\ r/R_e = 3 \end{split}$$

$$\begin{split} MOD &= 31.3 \\ \mu_B &= 25.6 \\ \mu_I &= 23.6 \\ \mu_J &= 22.8 \\ \mu_K &= 21.9 \end{split}$$

$$\begin{split} FoV &= 30'' \times 30'' \\ L_B &= 26.7 \ 10^6 \ L_{B,0} \\ L_I &= 44.8 \ 10^6 \ L_{I,0} \\ L_J &= 67.4 \ 10^6 \ L_{J,0} \\ L_K &= 99.8 \ 10^6 \ L_{K,0} \\ M_{SF} &= 189 \ 10^6 \ M_0 \end{split}$$

RESULTS

THE I BAND IMAGE IS EXTREMELY CROWDED (RESOLUTION TOO LOW)

CONCLUSION

THE COMBINATION MICADO@E-ELT & NIRCAM@JWST WILL ENABLE US TO EFFICIENTLY MAP THE RESOLVED STELLAR POPULATIONS OF ENTIRE GIANT GALAXIES UP TO THE VIRGO CLUSTER

WE WILL DERIVE GLOBAL STAR FORMATION HISTORIES AND STUDY STELLAR POPULATION GRADIENTS ALL OVER THE GALAXY AREA WITH A FEW SHOTS

Advanced Exposure Time Calculator (parameters)

- Total integration time : 18000 sec (5h)
- Number of individual exposure : 180
- Background (sky + thermal + residual/unresolved star light)
- Noise model (statistical + RON)
- PSF (fixed in the FoV)
- Throughput (nominal: aperture, obstruction, efficiency)