Massive Black Holes Lurking in Milky Way Satellites

Sandor Van Wassenhove Advisor: Marta Volonteri (UMichigan) Collaborators: Matthew Walker, Jon Gair (Cambridge)

Signatures of BH Formation

- Black holes found in the centers of most nearby galaxies
- Original properties of BHs in massive galaxies overwritten by accretion and mergers (Volonteri & Natarajan 2009)
- BH population with little growth required to study original seed population

Dwarf Galaxies

Fornax ESG/Digkiizeet Sky2009/ey 2

- Quieter merger histories than more massive galaxies

 less merger induced BH
 accretion (Volonteri et al. 2008)
- Strongly affected by reionization shallow potential wells
- How often do dwarfs host BHs?
- Do dwarfs follow the BH mass scaling relations?

Methods Overview

 Used merger trees to study the build up of a Milky Way type galaxy from z=20

(Volonteri et al. 2003)

- Haloes seeded with BHs at high redshift using two different seed formation schemes
- Implemented a simple model for MBH growth through halo mergers
- Unmerged haloes at z=0 form analogue dwarf galaxy population

Stewart et al. 2008

High Redshift BH Seeds

(Volonteri et al. 2008)

- Models match integrated BH mass density, AGN luminosity function, and z=0 BH mass function
- Constraints on formation:
 - Low metallicity environment (z > 12)
 - Haloes must be massive enough to have significant cooling

Population III Stellar Remnants

- Inefficient H₂ cooling may lead to a top heavy IMF (e.g. Carr et al. 1984, Abel et al. 2000)
- Stars may collapse with little mass loss to form BHs with mass 10²-10³ M_{sun} (Fryer et al. 2001, Madau & Rees 2001)
- Our model:
 - -3σ density peaks (M > 10⁵ at z=20, M > 10⁸ at z=12)
 - Require T_{vir} > 2500 K for H_2 cooling

(Tegmark et al. 2007, Yoshida et al. 2006)

$$- M_{seed} = 100 M_{sun}$$

'Massive Seeds'

(Lodato & Natarajan 2006)

- Gas dynamical instabilities cause gas inflow until the disk stabilizes
- Cooling dominated by H
- Our model:
 - $M > 10^8 M_{sun}$
 - T_{vir} < 14000 K to prevent
 fragmentation and global star
 formation

courtesy of Devecchi

Effects of Reionization on MBH Growth

- Simulations by Callegari et al. (2009) show that BH growth depends on gas fraction
- Haloes with shallow potentials lose their gas due to ultraviolet heating – reionization
- Follow Okamoto et al. (2008) to track baryon fractions of haloes after reionization
- We set z_{reionization} = 9

Callegari et al. 2009, 2010

Black Hole Growth

- Gas rich haloes: $f_b = \frac{M_b}{M_b + M_{DM}} \ge 0.1$ $\frac{\Omega_b}{\Omega_m} \approx 0.18$
- Minor mergers (mass ratio < 1:10): black holes do not pair efficiently; no merger or accretion
- Major mergers (mass ratio > 1:10): black holes merge and accrete in gas rich haloes
- Accreted mass scales with the velocity dispersion of the resulting halo

$$M_{acc} = 10^8 M_{sun} (\sigma/200 km/s)^4 \qquad \log(V_c) = 0.74 \log(\sigma) + 0.8$$

$$M_{BH,final} = M_{BH1} + M_{BH2} + M_{acc}$$

Tremaine et al. 2002, Pizzella et al. 2005

Satellite Population

- Analytically evolve the satellites in the potential well of the host with tidal stripping and dynamical friction
- Halo and BH mergers follow the merger timescale from Boylan-Kolchin et al. (2008)

$$\frac{\tau_{merge}}{\tau_{dynam}} = \frac{0.4 \left(M_{host} / M_{sat} \right)^{1.3}}{\ln(1 + M_{host} / M_{sat})} \qquad \tau_{dynam} = \sqrt{R_{vir}^3 / G M_{host}}$$

Statistics of our Satellite Population

Luminosity Function

Radial Distribution

Velocity Distribution

BH Diagnostics

Pop III BHs are far more common than massive seed BHS

Current BH population is relatively unchanged from the seed population at low velocity dispersions

Observables

- Gravitational waves from EMRIs with the Einstein Telescope (<< 1/year expected)
- BH accretion from stellar winds (likely unobservable, Dotti et al. in prep.)
- Stellar orbital dynamics

Observational Prospects

For 10⁵ M_{sun} BHs, a few tens of orbits are available, but the MBHs are rare

Pop III BHs are not observable, but are common

$$M(r < R_{\inf}) = 2M_{BH}$$