The Tidal Disruption of Stars as a Probe of Galactic Nuclei

Linda Strubbe U.C. Berkeley

Strubbe & Quataert 2009, MNRAS, 400, 2070 Strubbe & Quataert 2010, in prep.

1. What fraction of galactic nuclei host a BH?

2. What are the dynamical properties of the stars surrounding the BH?

1. What fraction of galactic nuclei host a BH?

2. What are the dynamical properties of the stars surrounding the BH?

Watching the BH's gravitational effects on nearby stars is challenging since BH has only small radius of influence $R_{inf} \sim 1 - 10$ pc.

1. What fraction of galactic nuclei host a BH?

2. What are the dynamical properties of the stars surrounding the BH?

Watching the BH's gravitational effects on nearby stars is challenging since BH has only small radius of influence $R_{inf} \sim 1 - 10$ pc.

One observational tack: - Study nearby, moderately massive galaxies

(e.g., Richstone et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000)

But ... • only ~10 nearby galaxies probed well inside R_{inf}
• lower-mass galaxies?

1. What fraction of galactic nuclei host a BH?

2. What are the dynamical properties of the stars surrounding the BH?

Watching the BH's gravitational effects on nearby stars is challenging since BH has only small radius of influence $R_{inf} \sim 1 - 10$ pc.

Another tack:

- Study active BHs (e.g., Greene et al. 2008)
 - But ... majority of galaxies are quiescent
 can't address dynamics of stars close to BH

A new tack! Tidal Disruption of Stars by Black Holes

Binding force of star is overcome by BH's tidal gravity if $R_{\text{peri}} \leq R_{\text{Tidal}}$

Must happen in nucleus of *any* stellar system with a BH.

a) detect new BHs (out to z ~ 1!) -- particularly lower-mass BHs
b) teach us about dynamics of surrounding stars
c) teach us about BH growth

Tidal Disruption of Stars: Insights for stellar dynamics

Basic Mechanism:

Stars are gravitationally scattered onto new orbits when pass close to other stars.

$$\sim \frac{N_*(r_{\rm BH})}{t_{\rm relax}(r_{\rm BH})}$$

possible rate enhancers:

- flattened potential
- triaxial potential \rightarrow chaotic orbits

 \bigstar

- giant molecular clouds
- resonant relaxation

 \rightarrow theoretical $\gamma_{\text{galaxy}} \sim 10^{-5} - 10^{-3} \, \text{yr}^{-1}$

Tidal disruption rate as fcn of M_{BH} , R_{peri} , galaxy type is probe of dynamical conditions close to the BH.

e.g., Magorrian & Tremaine (1999), Merritt & Poon (2004), Alexander (2005)

Tidal Disruption of Stars: Insights for BH growth

BHs may grow significantly by consuming stars - especially IMBHs: if $\gamma_{\text{galaxy}} \sim 10^{-5} \text{ yr}^{-1}$, then $M_{\odot} \gamma_{\text{galaxy}} t_{\text{Hubble}} \sim 10^{5} M_{\odot}$

- ties growth of BH to dynamical conditions in stellar bulge - (partial) origin of $M_{\rm BH} - \sigma_*$ relation?

Tidal Disruption of Stars: Observations

Handful of candidate detections by ROSAT All-Sky Survey (Komossa 2002) XMM Slew Survey (Esquej et al. 2007) GALEX Deep Imaging Survey (Gezari et al. 2009)

 $\begin{array}{l} \gamma_{\rm galaxy} \sim 10^{-5} \, {\rm yr}^{-1} \\ ({\rm Donley \ et \ al. \ 2002}) \end{array}$

Important steps, but: archival, slow cadence, small spatial volume

New frontier: Rapid-Cadence Wide-Field Surveys

Currently underway :

The Palomar Transient Factory

quarter-sky $m_{\rm AB} \approx 21$ every few days

Near future :

 3π Survey: $m_{AB} \approx 23$ every few months Next decade (?) :

half-sky $m_{\rm AB} \approx 24.5$ every few days

The Process of Disruption

- star approaches from $r \gg R_{\rm Tidal}$ on $E \approx 0$ orbit at $v_{\rm p} \sim v_{\rm esc,BH}$

- slightly different depths in potential well

e.g., Rees (1988)

The Process of Disruption

- star approaches from $r \gg R_{\rm Tidal}$ on $E \approx 0$ orbit at $v_{\rm p} \sim v_{\rm esc,BH}$

- slightly different depths in potential well

e.g., Rees (1988)

The Process of Disruption

- star approaches from $r \gg R_{\rm Tidal}$ on $E \approx 0$ orbit at $v_{\rm p} \sim v_{\rm esc,BH}$

- slightly different depths in potential well

e.g., Rees (1988)

Fallback of the Bound Material

- after $t_{\text{fallback}} \sim \text{hours}$ - weeks, debris starts returning to pericenter and shocks, starts to accrete inward

- energy distribution gives mass fallback rate

shock

$$\dot{M}_{\rm fallback} \sim \frac{M_*}{t_{\rm fallback}} \left(\frac{t}{t_{\rm fallback}}\right)^{-5/2}$$

e.g., Rees (1988), Phinney (1989), Evans & Kochanek (1989)

Super-Eddington Fallback \rightarrow Outflows

- fallback rate can initally be >> Eddington rate radiation pressure drives gas back outwards $(v_{wind}/c \sim 0.1)$

> Deep inside: - photons are trapped by electron scattering

• At photosphere:

- escaping photons have blackbody spectrum
- cool temperature, large radius
 - \rightarrow large optical luminosity

Super-Eddington Outflows, cont. Photometric Signature: Blackbody Continuum

e.g., $M_{\rm BH} = 10^6 M_{\odot}$

at 10 days: $R_{\rm phot} \sim 1000 R_{\rm S} \sim 20 \,{\rm AU}$ $T_{\rm phot} \sim 3 \times 10^4 \,{\rm K}$ $L_{\rm optical} \sim 10^{43} \,{\rm erg/s}$! $M_{\rm AB} \sim -19$

Predicted Detection Rates: Super-Eddington Outflows

cadence is important PTF: 100s of events per year **PS** 1 : 100s of events per year LSST: 1000s of events per year tens - hundreds of IMBHs

May be missed by past surveys - exclude galactic nuclei

- mistaken for AGN

Strubbe & Quataert (2009)

Predicted Detection Rates: Challenges of Identification

Distinguishing from **supernovae** (close to galactic nucleus) will be tricky:

- most tidal disruption detections likely at $z \sim 1$ \rightarrow resolution ~ 1 " \sim several kpc

- rate of SNe in nucleus $\sim 100x$ tidal disruption rate

Follow-up observations will be crucial: spectroscopy

Predicted Detection Rates: Challenges of Identification

Distinguishing from **supernovae** (close to galactic nucleus) will be tricky:

- most tidal disruption detections likely at $z \sim 1$ \rightarrow resolution ~ 1 " \sim several kpc

- rate of SNe in nucleus $\sim 100x$ tidal disruption rate

Follow-up observations will be crucial: spectroscopy

Predicted Detection Rates: Challenges of Identification

Distinguishing from **supernovae** (close to galactic nucleus) will be tricky:

- most tidal disruption detections likely at $z \sim 1$ \rightarrow resolution ~ 1 " \sim several kpc
- rate of SNe in nucleus $\sim 100x$ tidal disruption rate

Follow-up observations will be crucial: spectroscopy

Super-Eddington outflow provides spectroscopic signature.

Spectroscopic signature to help identification of event

broad, strong blueshift $(v_{\text{wind}}/c \sim 0.1)$

Spectroscopic signature to help identification of event

Conclusions

1. New/upcoming transient surveys will detect many tidal disruption events.

- Super-Eddington outflows likely lead to large optical detection rates for PTF, PS1, and LSST.

- Challenging to identify/distinguish from supernovae.

- Outflows produce **spectroscopic signatures**: blueshifted absorption lines in the UV.

2. Studying tidal disruptions will teach us about:

- Demography of BHs in quiescent galaxies, esp. low-mass
- Stellar dynamics in galactic nuclei
- Growth of BHs, connection to growth of stellar bulge