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I. Formation via cluster infall

II. Evolution over relaxation time scales

III. Triaxiality and its consequences
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Rees 1988 Milosavljevic 2008

Black Holes Nuclear Star Clusters

I. Formation
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Why Migration of Star Clusters?

1. Infall time scales for globular clusters are roughly
    correct 

2. While they often contain young stars, the dominant
    populations of NSCs are old

3. Migration of 104-106 M⊙ objects to the center is
    common to both gas- and stellar-dynamical models

4. A massive “seed” is probably required for gas infall
   scenarios to work

5. Stars are easier than gas
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Miocchi & Capuzzo-
Dolcetta (2009)

Also: 

Fellhauer & Kroupa
(2002)

Bekki et al.  (2004)
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Ef = Ei + Eorb + Ecl

Mj+1 = (j + 1)M1

jEj+1 = (j + α)Ej + jE1

(j + 1)2R−1
j+1 = j(j + α)R−1

j +R−1
1

Ei,f = initial, final energy of nucleus

Ecl = cluster internal energy = −Gm2/2r

Eorb = cluster orbital energy = −αGmMi/2Ri, α ≈ 1

(M1 = m)

Sequential Mergers of Clusters

where

Then

Energy conservation implies
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α = 1.2

α = 0.8 Radius-mass relation

Sequential Mergers of Clusters
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M1 = �mGC�

M1 = 10�mGC�

Predicted 
relation

Piatek et al. (unpublished)
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r ≈
�

M•
MGC

�1/3

RGC

r

rinfl
≈ 2

�
M•

107M⊙

�−1/6 � MGC

106M⊙

�−1/3 �RGC

3pc

�
i.e.

∴ The smallest NSCs should have sizes
      ~ a few x rinfl in galaxies with SMBHs

Complete disruption occurs when

E. g. M● = 106 M⊙, rmin ~ 3 pc     ?
         M● = 107 M⊙, rmin ~ 10 pc   ✓

Now Add a Supermassive Black Hole... 
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 Cluster:

 MGC = 4x106M⊙

           (untruncated)     
         = 1.1x106M⊙

           (truncated)   
σ(0) = 35 km s-1

Galaxy:

ρ(1 pc) = 
             400 Msun pc-3

ρ ~ r -0.5 

A. Battisti et al.
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Cluster : Σ = Σ0

�
1 +R2/r20

�−1

Galaxy : lnΣ = lnΣe − b(R/re)
1/n + 1
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Surface Density Profiles 
First Infallt Second Infallt Third Infallt

Battisti et al. (2010)
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Mass-Radius Relation

Initial cluster radius 
BH influence radius 

R ∝ M

Battisti et al. (2010)
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First Infallt

Battisti et al. (2010)
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Second Infallt

Battisti et al. (2010)
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Third Infallt

Battisti et al. (2010)
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Growth Timescales - dE Galaxies

Lotz et al. (2001):
Examined globular cluster systems in 51 Virgo, Fornax dE galaxies. 

Summed radial distributions Observed/predicted NSC 
magnitudes 
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ρ(r) = ρa(r/ra)
−γ

∆t =
C(γ)

lnΛ

r3a
MGC

�ρa
G

�1/2
�
r0
ra

�(6−γ)/2

∆t1/2 ≈ 3× 1011yr

�
Re

1kpc

�1.8 � MGC

105M⊙

�−1

≈ 9× 1010yr

�
ra

1kpc

�3 � MGC

105M⊙

�−1 � ρa
1M⊙pc−3

�1/2 � r0
ra

�(6−γ)/2
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Assume that the mass density of the galaxy follows

The time for a GC at initial radius r0 to spiral in to the center is

The time for GCs initially within Re to spiral to the center is

Growth Timescales - gE Galaxies
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Cote et al. (2007)
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Half-mass relaxation times*

•   galaxy

✡  NSC

II. Relaxation

*assuming no SMBHs
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τheat ≈
�
ρnuc
ρgal

�1/2 �Vnuc

Vgal

�1/2

(tnuctgal)
1/2

� (tnuctgal)
1/2

Net effect of two-body relaxation 
depends on whether the galaxy is 
“hotter” or “colder” than the NSC.

If the galaxy is hotter, it transfers heat to 
the NSC on a timescale:

roughly the geometric mean of the galaxy 
and NSC relaxation times.

Dokuchaev & Ozernoi (1985)
Kandrup (1990)
Quinlan (1996)
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Mnuc

Mgal
� 104

�
ξ−1

100

�2 �
rnuc
rgal

�5

τheat � τcc ≡ ξ−1tnuc 10 � ξ−1 � 300

This heat transfer will reverse 
core collapse if

i.e.

Mnuc

Mgal
= A

�
rnuc
rgal

�B

More generally, one finds a critical size:

above which a NSC expands rather than 
contracts; A and B depend (weakly) on 
the galaxy density profile
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Merritt (2009)

Core Collapse vs. Core Expansion
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Mnuc

Mgal
= A

�
rnuc
rgal

�B

Evidence of NSC Evaporation?
r n

uc
/r g

al }expand

collapse
O  tevol ⪆ 10 Gyr

●  tevol ⪅10 Gyr

Merritt (2009)
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M•/Mgal = 0.03

Adding a Black Hole

Merritt (2009)

 A large BH reverses the 
temperature gradient, slowing 
the transfer of heat from galaxy 
to NSC

 A small BH inhibits core 
collapse, causing the NSC to 
expand more quickly

M•/Mgal = 10−4
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van den Bergh (1986): 

Nucleation fraction vs. galaxy 
magnitude

MB = -16      -14      -12     -10 

Perhaps NSCs in fainter 
spheroids were destroyed 
by heating from the galaxy.
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Orbits in Triaxial BH Nuclei
(a) chaotic

(b-c) tubes

(g-i) pyramids

Poon & Merritt (2001)III. Triaxiality
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γ = 1, T = 0.75 γ = 2, T = 0.75

ρ ∝ r−γ

Self-Consistent Triaxial NSCs

F = orbital fraction

T ≡ a2 − b2

a2 − c2

Pyramid 

Tube 

Chaotic Poon & Merritt (2004)
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rGR � r � rinfl

Pyramid Orbits

Merritt & Vasiliev (2010)

• ~ Keplerian ellipses

• Librate about short axis

• Integrable (regular)*

• e ⇒ 1 at the corners! 
1− e2

*for
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2-body relaxation

Vector RR

Newtonian precession
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Pyramid Orbits

Merritt & Vasiliev (2010)

The time for pyramid orbits to “drain” 
is:

where T is the dimensionless 
coefficient of triaxiality.

The BH feeding rate can be much 
greater than that due to two-body 
relaxation.
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Summary

• Accretion of globular clusters appears to be a 
viable model for NSC formation, at least in 
bulge-dominated systems

• Disappearance of NSCs in spheroids with MB 
> -16 may be due to relaxation effects (heating 
from the galaxy)

• Stellar tidal disruption rates might be very high 
in triaxial NSCs (if SMBHs are present)
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