

A unique laboratory: The Massive Black Hole in the Galactic Center

Stefan Gillessen, Reinhard Genzel, Frank Eisenhauer, Thomas Ott, Hendrik Bartko, Katie Dodds-Eden, Oliver Pfuhl, Tobias Fritz

Extremely dense star cluster

30" = 4 lightyears

Schödel+ 2006 (ISAAC, VLT)

The central 20": Seeing limited

Adaptive Optics

NACO, HKL color composite

Diffractionlimited images

Stars move on Keplerian orbits

Real Data (!)

Model

Currently: 30 orbits known

 $M=4\times10^{6}~M_{\odot}$ in 100 AU

$$M = 4\pi^2 \frac{a^3}{GT^2}$$

= $4\pi^2 \frac{(0.12'' \times 8 \text{ kpc})^3}{6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2} \times 15.2 \text{ yr}^2}$
= $4 \times 10^6 M_{\odot}$
 $p = a(1-e)$
= $0.12'' \times 8 \text{ kpc} \times (1-0.9)$
= 100 AU

IR coordinate system is tied to ICRF with 9 radio SiO masers

Reid+ 2007

Sgr A* and mass coincide to ~ 3 mas $\alpha_{\rm MBH} = 2.9 \pm 0.5|_{\rm stat} \pm 1.2|_{\rm sys} \,{\rm mas}$ $\delta_{\rm MBH} = 0.4 \pm 0.8|_{\rm stat} \pm 1.2|_{\rm sys} \,{\rm mas}$

Sgr A*

Sgr A* must be very heavy

- perfectly linear motion •reflex motion of Sun (~200 km/s)
- intrinsic motion •gal. l : -7.2 ± 8.5 km/s •gal. b: -0.4 ± 0.9 km/s
- Sgr A* is much heavier than surrounding stars •> 4 x 10⁵ M_☉

Sgr A* is extremely small

A rock solid case: Sgr A* is the MBH

A potential second BH in the GC would need to be light & distant

Hansen & Milosavljevic 2003, Gualandris & Merritt 2007, 2009 Merritt, Gualandris, Mikkola 2009 Reid & Brunthaler 2004 Gillessen+ 2009

How well do we know that mass is point-like?

$$\eta M_{\rm MBH} = 4\pi \int_{\rm peri}^{\rm apo} dr \, r^2 \int dm \, n(r,m)$$

estimate	η (for M _{\star} = 10 M _{\odot})
extrapolating stellar number counts	3.7 x 10 ⁻⁴
Drain Limit	≤ 11 x 10 ⁻⁴
Dynamical modeling	1 - 5 x 10 ⁻⁴
Number of XRB	1.5 x 10 ⁻⁴
Dark Matter	10 ⁻⁹ – 10 ⁻¹⁰

Measured: $\eta_{S2} = 0.021 \pm 0.019|_{stat} \pm 0.006|_{model}$

Radial velocity data & fit

Point mass and Distance are measured & correlated

VLT (Gillessen+ 2009)

Keck (Ghez+ 2008)

A short history of R₀

Surprisingly, the S-stars are young

The spectrum of S2 really is that of an ordinary main sequence B2 star

Martins+ 2008

S-stars: A Paradox of Youth

Ghez+ 2003

 ♦ Star formation so close the MBH impossible

♦ Stars are too young to have migrated from further out $t_{2BR} \approx 3 \, \text{Gyr}$

 $t_{\rm MS} \approx 0.1 \, {\rm Gyr}$

For r > 1": Hard to measure accelerations

(a, e, i, ω, Ω, t)

The traces for the young, clockwise moving stars intersect in one point

orientation of orbital angular momentum

Bartko+ 2009

Lu+ 2009

(Most of) the CW moving O/WR-stars revolve in a disk

Disk orbits have $\langle e \rangle \approx 0.4$

The disk is warped & counter-CW feature at $r \approx 5''$

Bartko+ 2009

The disk is warped & counter-CW feature at $r \approx 5''$

Disk-IMF is top-heavy

Two paradoxes of Youth

Orbital planes: S-stars ≠ disk stars

Eccentricities: S-stars ≠ Disk stars

Radial density profile of young stars is steep amplitude of red clump in KLF

Buchholz+ 2009, Do+ 2009, Bartko+ 2010

Idea I: Cluster in-spiral

Idea II: In-situ formation in infalling gas cloud

Bonnel & Rice 2008, Hobbs & Nayakshin 2008

Two paradoxes of Youth

The S-stars puzzle is much harder

In-situ formation

- Critical density $\sim M/R^3$ $\approx 2 \times 10^{-11} \text{ g/cm}^3$ (for R = 0.5")
- Core of clump in molecular cloud
 ≈ 10⁶/cm³

Fast transport

- cosmic pool game
- fast relaxation processes
- Migration from O/WR star disks

Rejuvination

- Stars are actually old but look young
- "stripping" of giants, S-stars are the hot cores
- Spectrum of S2

The Hill's mechanism is the key for fast transport

Massive Perturbers

- Scattering of field binaries into near loss cone orbits due to "Massive Perturbers"
- Tidal break-up of binaries at pericenter passage Hills 1988
- Fast Relaxation of orbit to match observed properties
 - Resonant?

Migration

- Formation of B-stars in (former) disks
- Interactions to increase <e> 2nd disk, stellar cusp, IMBH, e-instability, ...
- Fast Relaxation
 IMBH?

Both scenarios direct stars to large <e> orbits within few Myr

Resonant relaxation is just fast enough

IMBH: Would stall at interesting radius and randomize orbits fast enough

Baumgardt, Gualandris, Portegies Zwart 2006

Merritt, Gualandris, Mikkola 2009

The eccentricity distribution might be the clue

What is limiting astrometry today?

S2–like stars: Distortions Fainter stars: Halo noise

Fritz+ 2009

A positional noise floor: Residual Image Distortions

- Resolution would help (ELTs)
- High Strehl helps
- room for improvements for PSF determination ?

"Halo noise"

Seeing halo extends beyond radii at which the PSF can be determined

Assume, we continue what we are doing. How well do we do then?

NACO: Astrometry with 300 µas SINFONI: Spectroscopy with 15 km/s

A unique laboratory: The Massive Black Hole in the Galactic Center

- ~ 30 S-star orbits (r < 1")
- MBH most conservative explanation of data
- Astronishing S2 orbit
 - $R_0 = 8.3 \pm 0.4 \text{ kpc}$
 - M = 4.3 ± 0.06 |_{stat} ± 0.35 |_{R0} × 10⁶ M_{\odot}
 - non-pointlike mass: $\eta < 3\%$
- Warped disk of O/WR stars (1" < r < 10")
 - Different population of stars
 - in-situr formation from gaseous disk
- S-stars form a harder puzzle
 - Massive Perturbers + Hills mechanism + Resonant relaxation seem more probable than
 - IMBH-assisted migration
- Positional accuracy ~ 200 μas
 - For S2 distortion limited
 - limit for fainter stars: confusion / resolution
 - GR precession in S2 detected after next pericenter passage (2018)

