

Spectroscopic follow-up of high-z dusty galaxies discovered by ALMA

Eelco van Kampen (ESO)

ALMA will observe a large number of high-z galaxies that contain significant amounts of dust.

Dust extinction strongly varies between galaxies, posing interesting questions on how to best design optical/IR spectroscopic surveys of such objects.

ALMA as a redshift machine

Redshift coverage for CO transitions as a function of rotational quantum number J

Feasible to measure z of galaxy detected in dust continuum alone

Atomic lines redshifted into ALMA bands at high z e.g.:
[OI] 63, 145µm
[OIII] 88µm
[NII] 122, 205µm

Studying the high-z Universe in the sub-mm

- the sub-mm waveband is (currently) a blurry but deep probe of the high-z universe
- existing and upcoming sub-mm surveys are excellent target finders for ALMA and the E-ELT
- but how to follow-up ALMA observations of high-z dusty galaxies?

Sub-mm galaxies as merger-driven dusty starbursts

An example of a simple halo/galaxy merger sequence

A mock sub-mm survey (AzTEC@JCMT)

A mock sub-mm survey (AzTEC@JCMT)

AzTEC @ LMT 50m

SHADES: SCUBA half-degree survey

2 fields – Lockman Hole & SXDF @ 850 micron 120 sources with unbiased (deboosted) flux densities

SHADES: Source identification

Identification of submillimetre galaxies in the SHADES Source Catalogue 19

using R-band, VLA and Spitzer data ==>

Figure A1.25 \times 25-arcsec postage stamp images of each SMG in the LH SHADES Source Catalogue. Greyscale R-band and 24- μm data are shown in the leftand right-hand panels, respectively, superimposed with radio contours. Circles indicate 2 σ positional uncertainties. Solid boxes indicate robust identifications, where $P \le 0.05$ based on the radio or 24- μ m counts, or a combination of the two. Dashed boxes indicate tentative associations.

Extinction variation

Photo-z fitting from Dye et al. (2008) also provides an estimate for the extinction for each *SHADES* source.

This shows a clear variation in extinction over two magnitudes for bright sub-mm galaxies.

Worse for model galaxies: $\langle A_V \rangle \approx 2$

How to best design optical / IR multiple object spectroscopic surveys for dusty galaxies with highly variable extinction?

Conclusions

ALMA will provide redshifts of cold gas at high redshifts, but not for the stellar populations that could or could not be part of the ALMAdiscovered sub-mm galaxies. This will need to be done by multipleobject spectrographs because of the sheer number of sources.

To produce a statistically complete spectroscopic sample of high-z sub-mm galaxies one needs to account for the large variation in dust extinction of these galaxies when performing a MOS survey (where the integration time is the same for all galaxies).