Determining AGB mass loss histories form Planetary Nebulae: towards hexabundle MOS of Magellanic Cloud PNe

Martin Roth, Christer Sandin, Detlef Schönberner, Matthias Steffen (AIP)

The PNHALO Collaboration:

Christer Sandin, Martin Roth, Detlef Schönberner, Matthias Steffen (AIP)

Mike Barlow	(UCL)	Herschel GTO, MESS ¹⁾
Robin Ciardullo	(Penn State)	PNLF, VIRUS/HET
Romano Corradi	(IAC)	atlas of haloes of PNe
David Frew	(Perth)	LMC/SMC, GC
Peter Hauschildt	(Hamburg)	stellar atmospheres, opacities
Falk Herwig	(Victoria)	nucleosynthesis
Francesca Matteucci (Trieste)		chemical evolution of galaxies
Ana Monreal-Ibero (ESO)		3D spectroscopy
Quentin Parker	(Macquarie)	LMC/SMC, GC
Warren Reid	(Macquarie)	LMC/SMC, GC
Richard Shaw	(NOAO)	HST imaging LMC/SMC PNe
Yannis Tsamis	(Granada)	3D spectroscopy, PNe
Jeremy Walsh	(ESO, STECF)	3D spectroscopy, PNe
Albert Zijlstra	(Manchester)	AGB stars, winds

(1) AGB mass loss: major contribution to cycle of matter in galaxies

- > Strong, dust-driven stellar winds
- Enriched by freshly synthesized elements dredged-up from interio
- Important contribution to the recycling of matter in galaxies
- Short lifetime of high mass loss phases prevents direct detection
- Theory of mass loss on the AGB and beyond is highly uncertain

Goal: empirical mass loss determination using haloes of PNe

NGC6826 (PMAS A&G Camera, CAHA 3.5m)

Schönberner & Steffen 2002

PNHALO-Project:

Radiation-Hydrodynamics Simulations

+ Integral Field Spectroscopy

<u>Goals:</u>

- Radial density structure \rightarrow final mass loss episode
- Temperature, density \rightarrow type and age of halo
- Chemical abundances \rightarrow nucleosynthesis & dredge-up
- Detection of new haloes not found by dire
- Physics of ring structures within haloes

(2) PMAS Pilot Study

Sandin et al. 2008, A&A 486, 545

Roth et al. 2005, PASP 117, 620 Kelz et al. 2006, PASP 118, 129

temperature profile

density profile and mass loss history

(3) VIMOS-IFU Test

NGC 3242

 $T_{eff} = 68000 \text{ K}$ log g = 4.6 M = 0.65

VIMOS-IFU 54" × 54"

Mosaic of 3 pointings

Monreal et al. 2005 ApJ 628, L139

VIMOS-IFU instrumental issues :

- data reduction robustness
- response variation f(x,y), f(t)
- flux calibration
- wavelength calibration
- image quality / scattered light

see: Roth et al. 2008, Proc. ESO Instrument Calibration Workshop

(4) VIMOS-IFU Large Program -Step 1: feasibility demonstration

C. Sandin, A. Monreal-Ibero, M.M. Roth, M.Steffen, D. Schönberner, J. Walsh, R. Corradi

"Probing the final mass loss phase of AGB stars; a pilot study of Galactic Disk objects in the southern hemisphere"

083.D-0484(A) UT3 VIMOS Apr 27, 2009 Apr 30, 2009, 1.5 nights Visitor Mode

VIRUS @ HET

(5) LMC/SMC FIREBALL Survey

credit: MCPN Team STScI

FIREBALL: proposal for an upgrade of FLAMES at VLT AAO/USyd, Lyon, Potsdam

Instrument specification:

- 0.42"/core (set by retaining MUSE spectral resolution)
- 4.0-4.6"/hexabundle (max. field set by the button size)
- 50-75 hexabundles
- 60-90 fibre cores per hexabundle
- 5 MUSE spectrographs: 480(goal:430)-930nm, R=1500 @ 480nm, R=3600 @ 930nm.

Sensitivity:

- R~19.0-19.7 survey limit gives 50-100 galaxies per VLT field (median redshift ~ 0.2); typical scale sizes for disk galaxies are 2"-6" diameter (half light).
- Median surface brightness at z~0.2 is 23.5 mag/arcsec**2.

(5) Summary

- radiation-hydrodynamical models capable of describing observed PN structure
- use IFU to boost S/N on low-surface brightness regions and thus measure AGB mass loss history
- Calar Alto pilot study successful (highlight @ A&A)
- Feasibility study scheduled at VLT-VIMOS \rightarrow future Large Program
- Goal: build and use deployable IFU upgrade for FLAMES to perform MOS on LMC/SMC PNe

¹MESS: Herschel Key Project (GTO)

"The circumstellar environment in post-main-sequence objects"

The main aims of this programme are three-fold: (1) to study the time dependence of the mass loss process, via a search for shells and multiple shells around a wide range of evolved objects, in order to quantify the total amounts of mass lost at the various evolutionary stages of low to high-mass stars, (2) to study the dust and gas chemistry as a function of progenitor mass, and (3) to study the properties and asymmetries of evolved star envelopes.

To this end, a sample of 103 Asymptotic Giant Branch and Red Super Giants, post-AGB and Planetary Nebulae, Luminous Blue Variables and Wolf-Rayet stars, and 5 Supernovae remnants will be imaged with PACS at 70+170 micron, and a sub-set of 32 stars will be imaged at all 3 wavelengths with SPIRE.

In spectroscopy, a sample of 55 stars will be observed over the full wavelength range of PACS and, 23 stars will be observed with the SPIRE FTS.