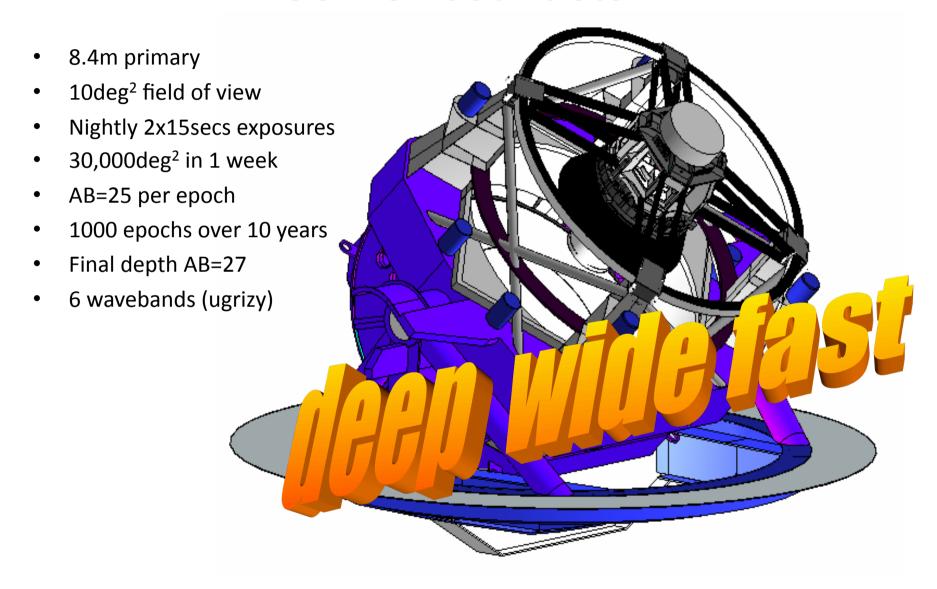

Large Synoptic Survey Telescope(LSST) and Europe

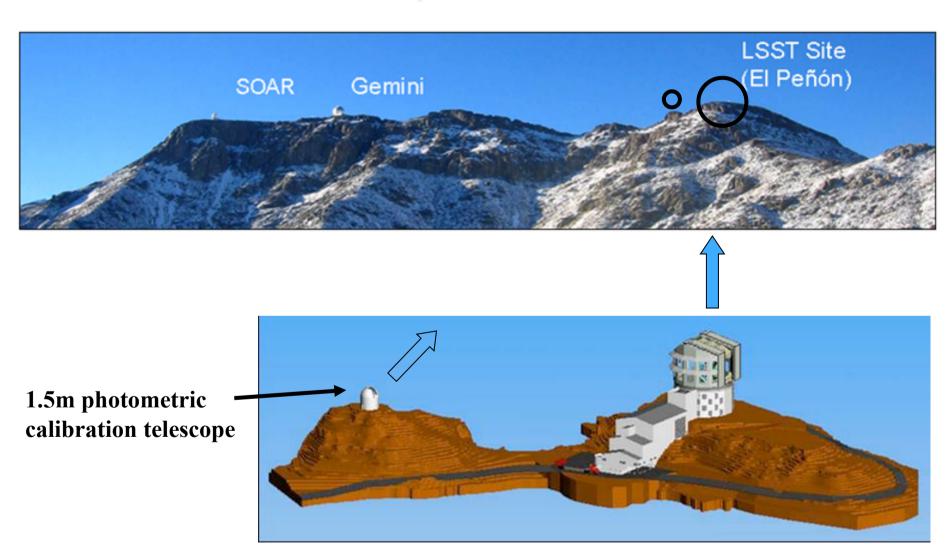
Richard McMahon, Institute of Astronomy, University of Cambridge

Reference material

A LIVING LSST DOCUMENT (ASTRO-PH/0805.2366); VERSION 1.0 OF MAY 15, 2008 Preprint typeset using LATEX style emulateapj v. 03/07/07


LSST: FROM SCIENCE DRIVERS TO REFERENCE DESIGN AND ANTICIPATED DATA PRODUCTS

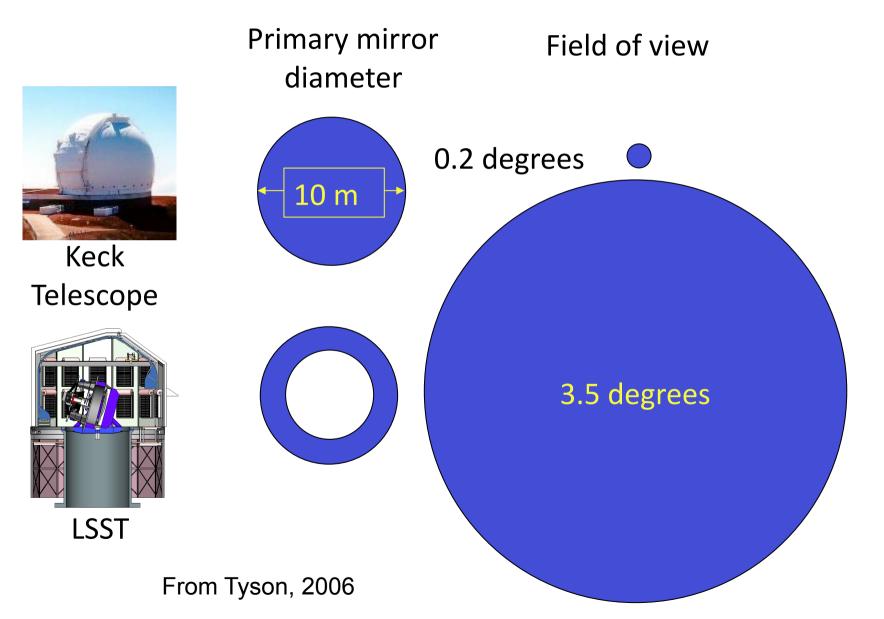
Ž. IVEZIù, J.A. TYSON², R. ALLSMAN³, J. ANDREW⁴, R. ANGEL⁵, T. AXELROD³, J.D. BARR⁴, A.C. BECKER¹, J. BECLA⁶, C. BELDICA⁷, R.D. BLANDFORD⁶, W.N. BRANDTՑ, J.S. BULLOCK斘, D.L. BURKԵ⁶, S. CHANDRASEKHARAN⁴, S. CHESLEY¹⁰, C.F. CLAVER⁴, A. CONNOLLY¹, K.H. COOK¹¹, A. COORAY斘, C. CRIBBS⁷, R. CUTRI¹², G. DAUES⁷, F. DELGADO¹³, H. FERGUSON¹⁴, J.C. GEARY¹⁵, P. GEE², D.K. GILMORE⁶, W.J. GRESSLER⁴, C. HOGAN¹, M.E. HUFFER⁶, S.H. JACOBYȝ, B. JAIN¹⁶, J.G. JERNIGAN¹⁷, R.L. JONES¹, M. JURIùጾ, S.M. KAHN⁶, J.S. KALIRAI¹匁, J.P. KANTORȝ, D. KIRKBY斘, L. KNOX², V.L. KRABBENDAM⁴, S. KRUGHOFF¹, S. KULKARNI²⁰, R. LAMBERT¹³, D. LEVINE¹², M. LIANG⁴, K-T. LIM⁶, R.H. LUPTON²¹, P. MARSHALL²², S. MARSHALL⁶, M. MAY²⁴, M. MILLER⁴, D.J. MILLS⁴, D.G. MONET²₃, D.R. NEILL⁴, M. NORDBY⁶, P. OʻCONNOR²⁴, J. OLIVER²⁵, S.S. OLIVIER¹¹, R.E. OWEN¹, J.R. PETERSON²⁶, C.E. PETRYՒȝ, F. PIERFEDERICIȝ, S. PIETROWICZ⁷, R. PIKE²⁷, P.A. PINTOՒȝ, R. PLANTE⁷, V. RADEKA²⁴, A. RASMUSSEN⁶, W. ROSING²ጾ, A. SAHA⁴, T.L. SCHALK²匁, R.H. SCHINDLER⁶, D.P. SCHNEIDERՒȝ, G. SCHUMACHER¹₃, J. SEBAG⁴, L.G. SEPPALA¹¹, I. SHIPSEY²⁵, N. SILVESTRI¹, J.A. SMITH³⁰, R.C. SMITH¹³, M.A. STRAUSS²¹, C.W. STUBBS²⁵, D. SWEENEYȝ, A. SZALAY³¹, J.J. THALER³², D. VANDEN BERKՒȝ, M. WARNER¹³, B. WILLMAN²⁵, D. WITTMAN², S.C. WOLFF⁴, W.M. WOOD-VASEY²⁵, AND H. ZHAN², FOR THE LSST COLLABORATION


A living LSST document (astro-ph/0805.2366); version 1.0 of May 15, 2008

www.lsst.org


Some Fast Facts

Site chosen: LSST will be on peak near Cerro Pachon within Gemini site compound



LSST Concept Summary

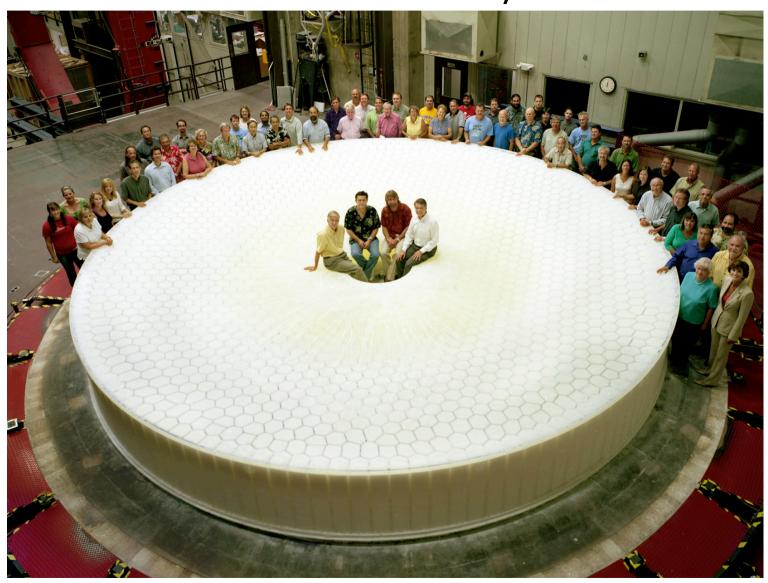
- 8.4 meter (f/1.2) Primary
 - 3.4 meter Secondary
 - 5.0 meter Tertiary
- 3.5° diameter field Of View
- 3 Gigapixel Camera
 - 4k x 4k CCD Baseline
 - 201 CCDs
 - 10micron pixels; 0.2arc sec
 - 65 cm diameter
 - Six Filters (ugrizy)
 - 30 Second Cadence
 - Highly Parallel Readout
 - 16 channels per CCD
 - Accumulated depth AB=27 each filter over 10 years
- Data Storage and Pipelines ~ 18Tb/night

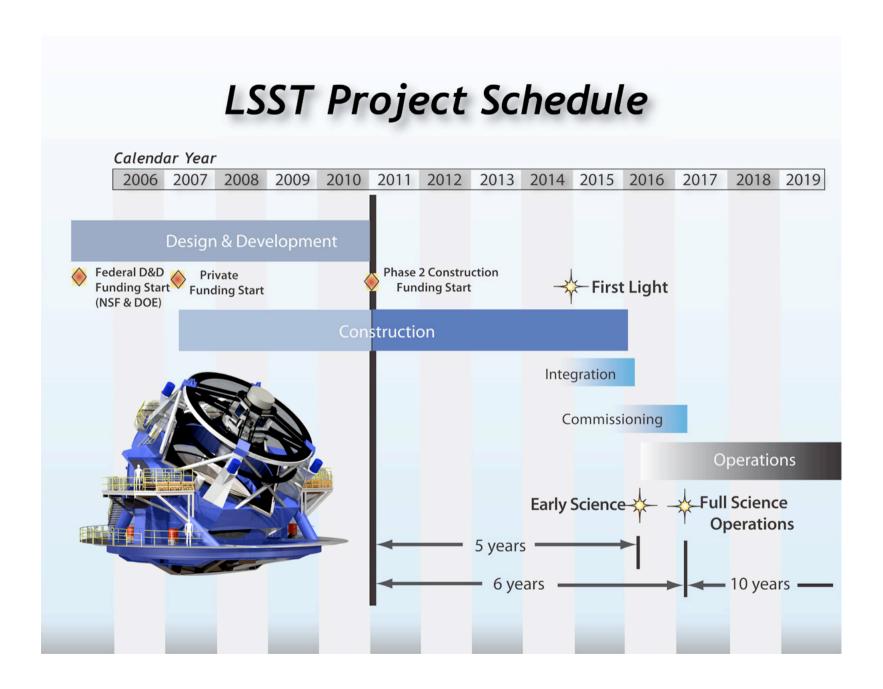
Etendue

Relative Etendue (= $A\Omega$)

Four Main Science Themes for LSST:

- 1. Constraining Dark Energy and Dark Matter
- 2. Taking an Inventory of the Solar System
- 3. Exploring the Transient Optical Sky
- 4. Mapping the Milky Way


Major Implications to the Camera:


- 1. Large Etendue
- 2. Excellent Image Quality and Control of PSF Systematics
- 3. High Quantum Efficiency over the Range 320 1,050 nm
- 4. Fast Readout

Massively Parallel Astrophysics

- Dark matter/dark energy via weak lensing
- Dark matter/dark energy via baryon acoustic oscillations
- Dark energy via supernovae
- Dark energy via counts of clusters of galaxies
- Galactic Structure encompassing local group
- Dense astrometry over 20000 sq.deg: rare moving objects
- Gamma Ray Bursts and transients to high redshift
- Gravitational micro-lensing
- Strong galaxy & cluster lensing: physics of dark matter
- Multi-image lensed SN time delays: separate test of cosmology
- Variable stars/galaxies: black hole accretion
- QSO time delays vs z: independent test of dark energy
- Optical bursters to 25 mag: the unknown
- 6-band AB=27 mag photometric survey: unprecedented volume
- Solar System Probes: Earth-crossing asteroids, Comets, trans- Neptunian objects

Aug' 2008; 8.4m Primary Cast at University of Arizona Mirror Laboratory

Current timeline; has slipped two years in last 2 years; not unusual for project at this stage

LSST and Europe

- 8.4m optical survey telescope located in Chile
- LSST scheduled for start of operations in 2016
- Massively parallel astrophysics from a single data set
 - Could this model be applied for spectroscopic surveys?
- Data will be public BUT access will be limited

Current European LSST activities

- France: Camera project (both Particle Physicists and Astronomers)
- UK participating in Data Challenges

Discussions

- UK: Data management (Andy Lawrence)
 - Possible funding tension with EUCLID
- Germany: Steinmetz
- ESO

LSST Data Philosophy & Terminology

- Access to LSST <u>data</u> should be completely open to anyone, anywhere
- Access to LSST <u>data processing resources</u> will be managed and paid for
- The vast quantity of LSST data makes it necessary to use computing located at a copy of the archive
 - Compute power to access and work with the data is a limited resource

- Foreign investigators will be granted resources beyond the base level in proportion to their country's or institution's participation in sharing costs.
- Current LSST plans are for resources to be apportioned across four service levels

Proposed Service Levels

```
Level 4 – typical/general users, no special access required
    6 Gbps bandwidth
    1 TFlop total
Level 3 - power user individuals, requires approval
    2 Gbps bandwidth
    1 TFlop at each Data Analysis Centre(DAC)
Level 2 - power user institutions, requires approval
    2 Gbps bandwidth
    5 TFlops at each DAC (1 TFlop/yr for 5 years)
Level 1 –most demanding applications, requires approval
    6 Gbps
    25 TFlops (5 TFlops/yr for 5 years)
```

END