ESO Spectroscopic Workshop, Garching, March 9th 2009

The PAU survey: a "high resolution" photo-z Terapixel machine

Enrique Gaztañaga ICE (IEEC/CSIC) Barcelona

Using galaxies to trace structure

BAO Sensitivity to Dark Energy

Tough measurement

Worse if one wants to measure dw/da

BAO about as sensitive to *w* as SNe

Radial direction is more sensitive to w, but has one dimension less than angular direction

Which Galaxies?

Most future surveys concentrate on "Luminous Red Galaxies": old elliptical galaxies, which are very bright and have a characteristic spectrum with a prominent break at 4000Å Easy to measure redshift with spectrum or photometry (called photo-*z*)

both very luminuos and invariable

SDSS

Galaxy-Galaxy Correlation Function

Based on 55000 "luminous red galaxies" from the SDSS spectroscopic galaxy survey

Padmanabhan

spec

0.001

PAU

photo

∆z / (1+z)

0.01

PAU

spec

0.001

0

0.01

photo

∆z / (1+z)

arXiv:0807.0535

Requirements on Redshift Precision

Can Many Narrow Filters Do The Trick?

<u>ALHAMBRA</u>

Survey at Calar Alto

Is this enough?

Moles et al., 2008, AJ, 136, 1325 Benítez et al., 2009, ApJL, 692L Cristóbal-Hornillos et al., 2009, arXiv0902.240

Redshift Determination: PAU forecast simulations

•v1: Choose a galaxy template representative of LRGs (Coleman Wu and Weedman 1980), recalibrated with photometry of real E/SO galx (Benitez etal 2004). Bruzual & Charlot library: ssp 11Gry z02.

•v2: empirical average spectra + 1PCA (Eisenstein etal 2003) to describe intrinsic LRG variation.

•Create a library of spectra calibrated with Cool etal 2006 color-magnitude relation in broad band colors (z=0.1-0.4). Color variations equivalent to rms 1.8 times fl E2003. Intrinsic variation:

Selection effects

• Generate a realistic galaxy catalogue (magnitudes, spatial density)

 z_S

- Add realistic photometric noise to simulate mock observations
- Add scatter to model intrinsic galaxy variation
- Recover redshifts with same templates
- •FURTHER OPTIMIZATION: filter range and locations, exposure time distributions, model photometry •SOME CAVEATS: unknown template variation outside 3750-7000A, LRG at z>0.5

Benitez etal ApJ, V691,241-260 (2009)1.00.020LRGs with L>L $_{\star}$ m_{l} <23 0.016 0.90.0120.80.0080.70.004 $\Delta z/(1+z)$ 0.000.6-0.0040.5-0.0080.4 -0.012Eisenstein et al. 2003 LRG Fit to Cool et al. 2007 -0.016Red points eliminated with cut on Bayesian odds 0.3LRG Fit +3 sigma variation LRG Fit -3 sigma variation -0.020 L 0.50.60.80.20.30.40.70.90.2

3800

3900

4000

4100

 $\lambda(A)$

4200

4300

4400

4500

Redshift Resolution

Precision on $d_A(z)$ and H(z)

16 bins with precision down to 2% for $d_A(z)$, 5% for H(z)

Dark Energy Parameters

18

BAO surveys comparison

	Z range	N gals	Tracer	Area	Volume	technique	FoM
WiggleZ	0.3 <z<1.2< td=""><td>2.8e+5</td><td>ELG</td><td>1000</td><td>2.04</td><td>spec</td><td>19</td></z<1.2<>	2.8e+5	ELG	1000	2.04	spec	19
BOSS_LRG	0.2 <z<0.8< td=""><td>1.5e+6</td><td>LRG</td><td>10000</td><td>8.06</td><td>spec</td><td>49</td></z<0.8<>	1.5e+6	LRG	10000	8.06	spec	49
HETDEX	1.8 <z<3.3< td=""><td>1.0e+6</td><td>LAE</td><td>200</td><td>1.91</td><td>spec</td><td>37</td></z<3.3<>	1.0e+6	LAE	200	1.91	spec	37
WFMOS_ELG	0.5 <z<1.3< td=""><td>2.0e+6</td><td>ELG</td><td>2000</td><td>4.47</td><td>spec</td><td>43</td></z<1.3<>	2.0e+6	ELG	2000	4.47	spec	43
WFMOS_LBG	2.3 <z<3.3< td=""><td>6.0e+5</td><td>LBG</td><td>300</td><td>1.53</td><td>spec</td><td>24</td></z<3.3<>	6.0e+5	LBG	300	1.53	spec	24
PS1	0.3 <z<1.5< td=""><td>5.0e+8</td><td>ALL</td><td>20000</td><td>65.3</td><td>photo</td><td>65</td></z<1.5<>	5.0e+8	ALL	20000	65.3	photo	65
DES	0.3 <z<1.5< td=""><td>1.5e+8</td><td>ALL</td><td>5000</td><td>16.3</td><td>photo</td><td>42</td></z<1.5<>	1.5e+8	ALL	5000	16.3	photo	42
PAU_LRG	0.1 <z<1.0< td=""><td>1.5e+7</td><td>LRG</td><td>8000</td><td>11.2</td><td>photo</td><td>82</td></z<1.0<>	1.5e+7	LRG	8000	11.2	photo	82
WFMOSx10	0.5 <z<1.3 2.3<z<3.3< td=""><td>2.0e+7 6.0e+6</td><td>ELG LBG</td><td>20000 3000</td><td>44.7 15.3</td><td>spec spec</td><td>186</td></z<3.3<></z<1.3 	2.0e+7 6.0e+6	ELG LBG	20000 3000	44.7 15.3	spec spec	186
SPACE H<22.0	0.3 <z<2.0< td=""><td>1.5e+8</td><td>ALL</td><td>20000</td><td>112</td><td>spec</td><td>213</td></z<2.0<>	1.5e+8	ALL	20000	112	spec	213

PAU = Physics of the Accelerating Universe

- ~45 particle physicists (theoreticians and experimentalists), astronomers, astrophysicists, cosmologists... Awarded a Spanish Consolider-Ingenio 2010 project (€5M over 5 years). PI: Enrique Fernández (IFAE). Main goals:
 - Design, build and commission a large (~6 deg²) FoV CCD camera
 - Perform a photo-z BAO survey with it
 - Understand DE from theory point of view
- Telescope (funding independent from Consolider-Ingenio)
 - Newly built, dedicated 2.5 m class telescope
 - Wide field (3 deg diameter). Effective Etendue ~20
 - in Sierra Javalambre (1957m high, Teruel, Aragón)
 - Requirements set to fit PAU-BAO-LRG needs
 - funded by Fondo de Inversión de Teruel: 50% from the central government & 50% from the regional - Aragón - government.
 - Through the newly created Centro de Física del Cosmos de Aragón, (CEFCA). CEFCA includes a Data Center.Responsible: Mariano Moles

PAU-BAO Survey

BAO LRG survey in a 2m (effective) class telescope (Ef.Etendue ~20) with a ~6 deg² FoV camera equipped with ~40 10nm-wide filters, ~500 Mpixels with 0.35"/pixel.

- 8,000 deg² in 4 years (but we have dedicated use of telescope for 5 years)
- 0.1 < z < 0.9 <u>Selection effects</u>
- *m*_l < 23
- $n_{LRG} > 10^{-3} (h/Mpc)^3$, $nP \sim 10$ at all scales
- V ~ 25 Gpc³ ~ 9 (Gpc/h)³
- N_{LRG} ~ 14 million (L > L*, i_{AB} < 22.5)
- $N_{galaxy} \sim 200$ million

PAU Camera

Currently being defined! Some initial ideas:

- Drift scan (TDI) technique minimizes dead time due to slew and read out.
- Filters atop sensors in two filter trays.
- Could use DES CCDs (commercial E2V another option).
- Use DES (Monsoon) electronics.
 - Two trays: one blue tray observed once and one red tray observed twice (this gives an exposure of 16850sec)
 - FOV Diametre 476 mm or 3 deg
 - 5 wide (W=>SDSS) band filters (1 copy each) + 40 narrow (N) band filters (at least 2 copies each)
 - Relative exposure time distribution between filters according to PAU paper.

MEASURING BARYON ACOUSTIC OSCILLATIONS ALONG THE LINE OF SIGHT WITH PHOTOMETRIC REDSHIFS: THE PAU SURVEY

N. BENÍTEZ, ¹ E. GAZTAÑAGA, ² R. MIQUEL, ^{3,4} F. CASTANDER, ² M. MOLES, ⁵ M. CROCCE, ² A. FERNÁNDEZ-SOTO, ⁶						
P. FOSALBA, ² F. BALLESTEROS, ⁷ J. CAMPA, ⁸ L. CARDIEL-SAS, ⁴ J. CASTILLA, ⁸ D. CRISTÓBAL-HORNILLOS, ⁴						
M. Delfino, ¹⁰ E. Fernández, ^{4*} C. Fernández-Sopuerta, ² J. García-Bellido, ³ J.A. Lobo, ² V.J. Martínez, ⁴						
A. Ortiz, A. Pacheco, 4,10 S. Paredes, 7 M.J. Pons-Bordería, 7 E. Sánchez, S.F. Sánchez, J. Varela, 7						
J.F. DE VICENTE [°]						
¹ Instituto de Matemáticas y Física Fundamental(CSIC), Madrid						
² Institut de Ciències de l'Espai (IEEC-CSIC), Barcelona						
³ Institució Catalana de Recerca i Estudis Avançats, Barcelona						
⁴ Institut de Física d'Altes Energies, Barcelona						
⁵ Instituto de Astrofísica de Andalucía (CSIC), Granada						
⁶ Departament d'Astronomia i Astrofísica, Universitat de València						
⁷ Observatori Astronòmic de la Universitat de València						
⁸ Centro de Investigaciones Enérgeticas, Medioambientales y Tecnológicas, Madrid						
⁹ Instituto de Física Teórica (UAM-CSIC), Madrid						
¹⁰ Port d'Informació Científica, Barcelona LHC-TR1 DM Center						
¹¹ Centro Astronómico Hispano Alemán (CSIC/MPG), Calar Alto						
(Dated: July 3, 2008)						
<u>The Astrophysical Journal, V691,241-260 (2009)</u>						
arXiv:0807.0535						

DES PROJECT

www.darkenergysurvey.org

ALHAMBRA PROJECT

Moles et al., 2008, AJ, 136, 1325 Benítez et al., 2009, ApJL, 692L Cristóbal-Hornillos et al., 2009, arXiv0902.240

Other Science: A terapixel redshift Survey

Galaxy evolution

Selection effects

- Intergalactic dust
- Quasars and the Lyman alpha forest
- High-redshift galaxies
- Clusters (mass estimates)
- weak gravitational lensing (magnification, crosscorrel)
- Strong gravitational lensing
- Correlation of quasar absorption systems with galaxies
- Halo stars

. . .

- Local group stars
- Serendipitous discoveries

<u>Summary</u>

- The accelerated expansion of the universe seems to change completely our understanding of the universe and its components. The quest to understand what causes the acceleration still open.
- Novel approach to photometric redshift determination allows measurement of the BAO feature along the line of sight in an efficient way.
- This leads to a statistically powerful, systematically robust determination of dark-energy parameters.
- Approach complements (for BAO and for other science) spectroscopic surveys. Terapixel redshifts.
- But project is challenging: new telescope with large FoV, new large camera, many filters, photo-z approach...
- Funding within reach.
- After a call for a conceptual design in 2008 (5 proposals) the telescope requirements have been set up. The bidding process is about to start.
- 24-30 months to have the telescope in the mountain.