Disks and the Formation of the Most Massive Stars

Presented at the ESO-MPA-MPA-USM Workshop on:

From Circumstellar Disks to Planetary Systems

Garching, 3 November 2009

Harold.Yorke@jpl.nasa.gov

Jet Propulsion Laboratory California Institute of Technology

© 2010 California Institute of Technology. Government sponsorship acknowledged.

Outline

- Introduction
- The evolution of accreting (proto-)stars at high accretion rates
- Destruction and dissipation of cores & disks
- Discussion & Conclusions

Disks and Massive Star Formation: A few selected observational facts

- No disk yet found around an optically visible main sequence O-star
 - Disks around B-stars have been observed
 - There is indirect evidence of disks in early phases: (poorly) collimated outflows
- There are massive molecular cores without outflows
 - There are hot cores without outflows and without radio continuum
- Some magnetic field measurements; when measurable sub/super-critical within factor 2
 - Θ1 Ori C is an O5 magnetic star!

Why is the study of disks around high mass stars so difficult?

- Direct imaging of high mass star forming regions difficult
 - High mass stars are rare (few and far between)
 - High mass stars evolve relatively quickly
 - High mass star forming regions are highly confused
 - High mass star forming regions are highly obscured
- High mass stars generally form in dense clusters with a high degree of multiplicity
 - Examples: Ori TC; NGC 3603; 30 Dor
 - Most O-stars located in center
 - m=1.5 for high mass stars compared to m=0.5 for solar stars
 - O-stars often in close binary systems (P ~ 3-5 d) with a high percentage of double-lined spectroscopic binaries

Disks are a crucial ingredient of high mass star formation

- Help get rid of angular momentum
 - Multiplicity of high mass stars converts spin angular momentum of contracting/collapsing molecular core into orbital angular momentum
- Allow accretion onto compact high mass star precursors
 of high luminosity
 - Disk self-shields against radiative acceleration
 - "Flashlight effect" (Yorke & Bodenheimer 1999; Yorke & Sonnhalter 2002) allows most radiation to escape in a direction perpendicular to disk
 - Disk casts shadow of luminous central source, allowing infall of molecular core material onto disks

The Growth of Stellar Mass by Accretion

- Calculations of molecular core collapse show that infall motions are halted in the central region when it becomes optically thick (several Jupiter masses); when H⁻ opacity dominates R ~ R_☉
- This quasi-hydrostatic core contracts on Kelvin-Helmholtz time scale towards H-burning (and main sequence) while still accreting material from surrounding infalling optically thin envelope
- Evolution of accreting main sequence stars first considered by Meyer-Hofmeister & Kippenhahn (1977)
- Palla & Stahler (1990) considered accreting pre-main sequence stars (importance of deuterium burning) at modest rates

Sources of Luminosity of accreting Stars

- Accretion luminosity: $L_{acc} = \xi GM_*/R_* dM/dt$ $L_{acc} = 6000 L_{\odot} [M_*/30 M_{\odot}]^{0.2} [dM/dt / 10^{-4} M_{\odot}/yr]$
- Deuterium burning $L_{D} = 400 L_{\odot} [dM/dt / 10^{-4} M_{\odot}/yr]$
- PMS Contraction $L_{KH} = GM*^2/R*^2 dR/dt$
- Hydrogen burning $L_* = 10^5 L_{\odot} [M_*/30 M_{\odot}]^{3.2}$

Evolution of accreting stars

(Hosokawa & Omukai 2009)

Evolution of accreting stars

(Hosokawa & Omukai 2009)

Figure 24. Comparison between the protostellar radii calculated by the onezone models based on McKee & Tan (2003) but with parameters calibrated as in Appendix C (solid) and by our numerical models (dotted). The cases with the accretion rates from 10^{-6} to $10^{-3} M_{\odot} \text{ yr}^{-1}$ are shown.

Evolution of accreting stars

Yorke & Bodenheimer (2008): stellar photosphere is at stellar surface

Evolution of accreting stars in the HRD (dM*/dt > 0)

Evolution of accreting stars in the HRD (dM*/dt > 0)

Evolution of accreting stars in the HRD (dM*/dt > 0)

A few Remarks

- Accretion physics will be key to understanding formation of massive stars
- Stellar evolution is not dead

Time dependent accretion through disk

(Yorke & Sonnhalter, 2002, ApJ, 569, 846)

3D Models of Massive Star Formation (Krumholz et al 2009, Science)

100 M_{\odot} cloud, 20 K, 0.1 pc, $\rho{\sim}r^{-3/2}$

Edge-on views of density at: 17.5, 25.0, 34.0, 41.7 and 55.9 kyr. The leftmost frames show a $(0.3 \text{ pc})^2$ region, and each step to the right reduces the size of the region shown by a factor of 4; the rightmost box shows a region (966 AU)² in size. The color scale is logarithmic, running from 10^{-19} to 10^{-12} g cm⁻³.

3D Models of Massive Star Formation (Krumholz et al 2009, Science)

Pole-on views of column density at:17.5, 25.0, 34.0, 41.7 and 55.9 kyr. The color scale is logarithmic, running from 10^{-1} to 10^3 g cm⁻².

=> Stars of mass 41.5 M_{\odot} and 29.2 M_{\odot} with 1590 AU separation

Step 1: Collapse of a (slowly) rotating 10 M_{\odot} molecular core (2/2)

10

core + accretion luminosity

10 M_{\odot} clump; R=0.07 pc; T_{out} = 100 K

27

Step 2: Photoevaporation of molecular core and disk by nearby O star (1/2)

Use of Richling & Yorke (2000) ApJ 539, 258 computer code

- 2.5D Hydrodynamics (axial symmetry)
- 2D Radiation transport of non-ionizing radiation ("grey" FLD approximation) => dust temperature
- Self gravity
- Angular momentum transport (Shakura-Sunyaev "alpha")
- Evolution of central protostar in HRD
- Time dependent heating/cooling of gas
- No evolution of the dust (coagulation/cratering/shattering)
- No magnetic fields
- Central stellar wind + EUV / FUV
- Time dependent ionization/recombination of H and C
- Transport of stellar EUV photons (hv > 13.6 eV)
- Transport of stellar FUV photons (6 eV < hv < 13.6 eV)
- Transport of H-recombination photons ($hv \sim 14.2 \text{ eV}$)
- Transport of EUV & FUV photons scattered by dust

circumstellar

disk

EUV radiation

FUV radiation

massive star

Step 2: Photoevaporation of molecular core and disk by nearby O star (2/2)

Initial conditions

Mass of star: 5.4 M_{\odot} Mass of disk: 1.9 M_{\odot}

External O5 star Distance from disk: 4000 AU

Results

Dissipation of molecular core in 8,000 years Dissipation of disk in 100,000 years

Step 3: Line transfer calculations of [CII] 158um and [OI] 63um radiation

Line transfer along a grid of LOS at various angles of view

Continuum at 158um

From Circumstellar Disks to Planetary Systems

Line - Continuum of [CII] 158um

From Circumstellar Disks to Planetary Systems

Line - Continuum of [OI] 63um

From Circumstellar Disks to Planetary Systems

Velocity structure of [OI] 63um

From Circumstellar Disks to Planetary Systems

Conclusions and Discussion

- Disks are an important (but short-lived) ingredient of massive star formation – they allow accretion at high rates onto (proto-)stars
- Details of accretion onto (proto-)star effect its appearance and evolution
- Molecular cores can be photoevaporated by a nearby O star in a 10⁴ years
- Circumstellar disks in the immediate vicinity of O stars can survive 10⁵ years (and only 10⁵ years)
- The future: ALMA, Herschel, SOFIA, ...

Thank you

From Circumstellar Disks to Planetary Systems