Chemistry in disks: an overview

Serpens core, IR image 2'x2' VLT-Hawkeye

Ewine F. van Dishoeck Leiden Observatory / Max Planck Institut für Extraterrestrische Physik

Outline

• Introduction

Progress in observations and models

• Outer disk: cold-warm chemistry

- Importance of photoprocesses
- PAHs
- Effects of grain growth
- Inner holes or gaps
- Inner disk: hot chemistry
- Evolution from cloud to disk
- Conclusions

See van Dishoeck 2006 PNAS, Bergin et al. 2007 PPV, Bergin 2009, Semenov 2009 for reviews *Thanks to many collaborators and colleagues*

Disk chemistry: from cores to planets

Öberg 2009

- Inner vs outer disk? Gas vs ices? Preservation pristine cloud material?

Mm vs IR: probing different parts of disks

Near-IR thermal emission

IR: vibration-rotation lines: 300-2000 K

Some history: solar system community

- Large literature on chemical models of the 'solar nebula' (inner 10 AU) since 1970's
 - E.g., Lewis, Prinn, Fegley, Lunine,
- Models applied to large range of solar system observations
 - E.g., CO/CH₄ planetary atmospheres, comet abundances, meteorites
- Chemistry thought to be dominated by thermal equilibrium (3body) rather than kinetic (2-body) processes

Lunine 1989

Some history: astrochemistry community

1D Radial transport models

- Consider chemical evolution of parcel of gas as it moves radially from >100 AU to few AU
- Include large gas-phase chemistry network (few hundred species, few thousand reactions) and gas-grain adsorption/desorption processes
- Chemistry dominated by temperature profile: virtually no gas-phase molecules >10 AU (*cold* →*frozen out*), active gas-phase chemistry <10 AU
 - E.g., Bauer et al. 1997, Finocchi & Gail 1997, Gail 2001-2004, Willacy et al. 1998, Aikawa et al. 1997, 1999

Example

Abundances in midplane after 3x10⁶ yr

=> Everything frozen out at >10 AU But this is NOT what is observed!

Aikawa et al. 1999

Molecules in disks: single-dish mm

- Simple molecules detected, including deuterated species
- Evidence for ion-molecule chemistry (HCO⁺) and photodissociation (CN)
- Instruments do not yet have sensitivity to search for complex molecules

Kastner et al. 1997 Dutrey et al. 1997 van Dishoeck et al. 2003 Thi et al. 2004

Starting to image them

Note CN more extended: HCN $\xrightarrow{h\nu}$ CN

Qi et al. 2008 Piétu et al. 2007 Bergin et al. 2007, Aikawa et al. 2003 **Chapillon A16**

Radial profiles

CID project; Dutrey et al. 2007 Observed column density profiles steeper than models

Importance of vertical structure

- Calculate chemistry in 1+1D static flaring models (>30 AU)
 - Aikawa et al. 1999, 2001:
 - Kyoto minimum mass solar nebula model
 - Low temperatures => needed artifically low sticking coefficient S=0.03 to match observations
 - Willacy & Langer 2000
 - Two-layer Chiang & Goldreich model
 - All molecules photodissociated in warm layer
 - All molecules frozen on grains in cold layers => needed high photodesorption rate to match observations
 - Aikawa et al. 2002, van Zadelhoff et al. 2003
 - D'Alessio et al. models with continuous T,n gradient
 - Warm molecular layer where molecules stay off the grains even with S=1

Three-layer chemical structure

Physical-chemical models: flowchart

See Kamp & Bertoldi 2000, Kamp & van Zadelhoff 2001, Kamp et al. 2003 for debris disks

Glassgold et al. 2004, 2009 Woitke et al. 2009

....

New generation disk models

ProDiMo: Woitke, Kamp & Thi 2009 Warm surface layers with *T* up to few thousand K out to 10 AU Posters: Heinzeller A46, Aresu A3, Chapparo A15, Chapillon A16, Dutrey A28, Fogel A33, Woitke B47

Some thoughts on model philosophies

A few words about chemistry

Gas-phase chemistry

- Elemental abundances (e.g. high vs. low metals) and cosmic ray ionization rate important input parameters
- Gas-phase chemistry not very sensitive to temperature in 10-200 K regime
- Many different chemical networks containing a few hundred to a few thousand reactions => reduction?

- Wiebe, Semenov et al. 2003, 2004

 Best agreement with well-studied PDRs and dark clouds is a factor of a few – ten => better agreement for disks would be a miracle!

A few words about chemistry

Gas-grain interactions

- Freeze-out/thermal desorption depend sensitively on dust temperature profile
 - Species dependent: CO T>20 K, H₂O T>100 K; binding energies not well known for all species and depend on type of ice or surface
- Fundamental issues with formulation grain surface reactions (diffusion-limited vs. accretion-limited)
- Timescales: t_{ads}~2x10⁹/n_H yr => strongly dependent on density

Importance of shape radiation field

- Photodissociation rate $k_{pd} = \int \sigma(\lambda) I(\lambda) d\lambda$
- Results sensitive to adopted UV field, especially <1100 Å
- Affects $H \rightarrow H_2$ and $C^+ \rightarrow CO$ transition, just as in PDRs
- Some molecules are dissociated by Ly α (e.g., H₂O, HCN), others are not (e.g. CN, CO, H₂)

www.strw.leidenuniv.nl/~ewine/photo

Van Dishoeck et al. 1987, 2006 Bergin et al. 2003

Effect of stellar UV

=> Molecules extended to greater height if no far-UV

Van Zadelhoff et al. 2003

Lines: with or without excess UV

Van Zadelhoff et al. 2003

- Difficult to disentangle with single-dish data - Need ALMA resolution to probe variations

Lack of [C I] from disks

HD 100546 disk

APEX-CHAMP⁺ Panić et al. 2010

Factor >5 weaker than predicted by Jonkheid et al. 2007

Lack of [C I] suggests more carbon-ionizing photons

Importance of gas-grain chemistry

Thermal processing (inner envelope + disk)

Energetic processing (envelope + disk)

K. Öberg 2009

Effect of mixing

Importance of grain growth + settling

Disk evolution

- Grain growth + settling
- Mass loss

• Much deeper penetration of UV

- Enhances photodissociation and photodesorption
- Heats disk to deeper layers

Fogel A33

Jonkheid et al. 2004, 2007 Aikawa & Nomura 2006 Bethell & Bergin 2009

Importance of photodesorption

- Needed to explain observations of cold CO (<20 K)
 - Dartois et al. 2003, Hersant et al. 2009
 - Alt: turbulent mixing: Semenov et al. 2006, Aikawa 2007
- Desorption yields per incident UV photon measured in lab under UHV conditions

$$Y_{\rm CO} = 2.7 \times 10^{-3} - 1.7 \times 10^{-4} (T - 15)$$

Two orders of magnitude more efficient than thought before!

Öberg et al. 2007, 2009 Andersson et al. 2006 Takahashi & van Hemert in prep.

Isotope selective photodissociation of CO

- Isotope-selective photodissociation leads to fractionation, i.p. enhancement of ¹⁸O,¹⁷O with respect to ¹⁶O
- Enhanced ¹⁸O,¹⁷O can be incorporated into H₂O
- Invoked to explain mass-independent oxygen isotope fractionation found in meteorites
 - Clayton et al. 1973; Clayton 1993; Lyons & Young 2005
- New model with updated molecular data
- Effects enhanced for large grains

Van Dishoeck & Black 1988, Eidelsberg et al. 1988, Visser et al. 2009

Willacy & Wood 2009 for ¹²C/¹³C

Gas-phase CO isotopologues in disks

VLT CRIRES R=10⁵

Smith, Pontoppidan et al. 2009 Smith B35

v=1

 $\mathbf{v}=\mathbf{0}$

- Even C¹⁷O detected!
- Isotope ratios indicate isotope selective photodissociation of ¹⁷O, ¹⁸O

Importance of PAHs with grain growth

- Absorbers of UV ⇒ shielding
- Heating of gas
- Formation of H₂
- Formation of CH, CH⁺
 - \Rightarrow precursors of CO
- Charge transfer
 - $C^{+} + PAH/PAH^{-} \Rightarrow C + PAH^{+}/PAH$

Lack of PAH emission from disks

- ~50% of Herbig Ae stars show PAHs, but only 11% or less of T Tauri stars
 - Only G stars detected, not K, M
- Absence in majority of T Tau disks due to low PAH abundance (0.1 x ISM)
 - Coagulation and/or freeze-out in embedded phase
- Observed out to 100 AU => probe of UV
- Only larger (N_C>100) PAHs can survive in planet-forming zones

Acke & van den Ancker 2004: obs Herbig Ae Geers et al. 2006, 2007, 2009: obs T Tau Habart et al. 2006, Visser et al. 2007: models

Molecular gas in gaps: observations

CO 4.7 µm v=1-0 VLT-CRIRES

Pontoppidan et al. 2008

- SR 21 has dust gap of ~20 AU as imaged with SMA
- Spectroastrometry of near-IR lines allows to pinpoint location to 7±1 AU
 ⇒ well inside gap!

-ALMA can detect/image molecular and atomic gas ([C I]!)

Chemistry in dust gaps

Hot organic chemistry in inner disk

Pontoppidan et al. 2005

v=1

- Abundances factor 1000 larger than in cold clouds

- No mm emission \Rightarrow must arise within inner 11 AU \Rightarrow inner disk
- Absorption variable on timescales of ~yr: disk structure
 - Also seen for GV Tau (Gibb et al. 2007)

Lahuis B5

First probe of organic chemistry in planet-forming zones

Hot water and organics in the planet-forming zones of disks

Future mid/far-IR

Can ALMA probe this region?

- Take HCN as example
- IR data: line width, $T_{ex} \Rightarrow$ emission comes from inner 1 AU
- Typical column ~10¹⁷ cm⁻² \Rightarrow mm lines optically thick \Rightarrow $T_{\rm R}$ ~ $T_{\rm ex}$ ~800 K if no beam dilution
- ALMA time estimator: 1 AU (0.01''), 0.5 km/s bin \Rightarrow $T_{\rm b}$ ~200 K rms

ALMA can detect these molecules, but not image them on 1 AU scales, only at ~few AU scales in optically thick lines
Need optically thin lines to probe midplane

Prospects for ALMA

- Optically thick lines probe *intermediate* warm layer
 - ALMA can image down to few AU in ~8 hr
- Optically thin lines probe *midplane*
 - ALMA can image down to ~15 AU in ~8 hr

Prospects for Herschel

- WISH: deep HIFI observations of H₂O of ~12 sources

- GASPS: ~200 disks distributed over spectral type, age, and disk mass: [CII], [OI], CO and H₂O lines

- DIGIT: full spectral scans of Herbig Ae disks

Prospects for JWST/ELT: see Meijerink talk

History of molecules in disks

To what extent are abundances in disks determined in pre/protostellar phase?

2D Disk formation

- Accretion onto 2D disk fundamentally different from 1D
- More material enters disk on back side, far from star
- Layered accretion: Outer envelope parcels end up in surface layer disk

Where does material go to? Inside-out collapse gives a layered disk

Strongly bound ices (H₂O, ...) partly survive, Weakly bound ices (CO, ...) not Visser et al. 2009

Summary

- Disk chemistry rapidly evolving field
- Outer disk: 3-layer 'sandwich' structure
- Inner disks: new Spitzer results and groundbased data open up study of inner AU
- Next generation physical-chemical models
 - Importance of T_{gas} , UV, X-rays, gas-grain
- Some abundances may be set in pre- and protostellar phase