Probing the NIR excess of Transitional disks with the Keck Interferometer

Close companion or circumbinary disk material?

04-Nov-2009 "Disks in Garching" Jorg-Uwe Pott (MPIA, Heidelberg, Germany)

Marshall Perrin (UCLA), Elise Furlan (JPL), Andrea Ghez (UCLA), Stan Metchev (SUNY), Tom Herbst (MPIA)

- Transitional disks appear to be partially depleted of inner dust at (sub-) AU scales (several talks at this conference)
- Steep rise of mid-IR excess radiation (> 8um) is characteristic and is explained by an inner hole
- Small fractional abundance (few %) of transitional disks among TTS hints to a short (<Myr) phase of disk dissipation
- Disk evolution and dissipation from inside out would favour such a hole

sks

nal

ansi

5

Nature

Close companion or disk in dissipation

Overview

- Sometimes NIR excess has been found as well. A significant amount 7 10-10 of dust (10^{-10...9} M_{\odot}) has remained and a planet might have opened the gap, instead of MRI or photoevaporation
- Missing angular resolution can lead to misinterpreting the SED: high resol. imaging reveals close companions in various cases

V773 Tau

- There is enough YSO binaries around to populate the transitional disks [Ghez+93,97 Leinert+93; Simon+95, Mathieu92, Melo03]
- -> disks might be less
- "transitional" as thought

Overview

- We observed five targets in the 1-2Myr young starforming Taurus / Auriga and three stars in Ophiuchus
- Varius NIR excess and SED shapes

3

Contact: Jorg-Uwe Pott, MPIA, jpott@mpia.de

Overview

• All our targets are accreting TTS (H-recomb. lines), in contrast to CoKu Tau/4

• Hole sizes are comparable

	DM Tau ^{a}	GM Aur^a	LkCa 15^b	UX Tau \mathbf{A}^b	RY Tau ^{c}	CoKu Tau/ 4^{f}
$M_{*} \left(\mathrm{M}_{\odot} \right)$	0.65	1.2	1.1	1.5	2.0	0.5
$R_{*} \left(\mathrm{R}_{\odot} \right)$	1.2	1.5	1.7	2.0	3.6	1.9^{h}
$T_{*}(\mathbf{K})$	3720	4730	4350	4900	5945^{d}	3720
$L_{*} (L_{\odot})$	0.25	1.03	0.96	2.18	12.8	0.61^{h}
$\dot{M} \left(\mathrm{M}_{\odot} \mathrm{yr}^{-1} \right)$	$2.0 \cdot 10^{-9}$	$1.0 \cdot 10^{-8}$	$2.4 \cdot 10^{-9}$	$9.6 \cdot 10^{-9}$	$2.5 \cdot 10^{-7}$	
Spectral type	M1	K5	K5	K2	$G1^{d}$	M1.5
$A_{\rm V}$	0.5	1.2	1.2	1.3	2.1	3.0 ^g
$K_{\mathbf{s}}$ mag. ^e	9.5	8.3	8.2	7.5	5.4	8.3 ^g
Inclination (deg)	40	55	42	60	25	$50 - 75^{i}$
$R_{\text{hole}}{}^{l}(\mathrm{AU})$	3	24	46	56	k	10
$K_{\rm innerdust}/K_{\rm total}$	$\lesssim 0.05$	0.12	0.23	0.32	0.73	$\lesssim 0.05$
$R_{\mathrm{innerdust}} ^{l}(\mathrm{AU})$	_	< 5	0.13	0.17	0.25	_

Models and values from:

Calvet et al. (2005), Espaillat et al. (2007b), Akeson et al. (2005a), Calvet et al. (2004), Skrutskie et al. (2006), D'Alessio et al. (2005).

Overview

- Our tool is the Keck Interferometer: 2.2um broadband V²-amplitudes at 85m results in 2.7mas resolution
- Excellent seeing (< 0.5"), and large apertures give high differential V2-precision (1-2%) down to K~10mag.
- Aperture synthesis due to earth's rotation

-20

-40

20

0

[mas]

40

-20 - 40

5

• Binary range probed:

- Flux ratio: 1 0.05 (companion / primary)
 - Mass ratios down to 0.15 at 1 Myr (Palla & Stahler '99)
- Separation 2.5 30 mas
 - 0.4-4 AU (projected)
- Position angles: 0 360 deg
 - KI data is PA and Pri/Sec ambiguous
- Complementary to previous single telescope aperture masking, which is sensitive down to 25~mas (Ireland&Kraus08)
- Quick look reveals:
 - all targets are resolved
 - no V2-variation >= 0.2

Resolving the stellar emis

- At 99.7% confidence level ≥ 99 % (95 %) of the fieldof-view are rejected
- Brighter companion solutions appear to be co-aligned with each other and with the KI baseline -> probably artificial solutions
- RY Tau has no solutions due to the addition of PTI data (different baselines)

Resolving the stellar emission - Resul

- Statistical analysis of the position angle of the solutions
- At the 3σ (1σ)-rejection level, there is no solution with FR ≥ 0.08 (0.05) outside a PA: 20±20 deg

The probability of having two (three) co-aligned binaries in our five-target sample is 3% (0.4%) -> more than half of the sample does not harbor a binary

Blue:

Red:

 2σ -rejection 1σ-rejection

Resolving the stellar emission - Results

- Probe sensitivity and analysis with mock data sets
- V2-variation ≥ 0.2
- Sampling is adequate
- Solutions peak in histograms
- No alignement with the KI baseline

Summarizing the binary analysis

- are sensitive to binary companions with flux ratios comparable to the near-IR excess fraction observed for these sources
- exclude almost all of the probed binary parameter range, down to companion flux ratios of 0.05 and 2.5 mas (3.5 AU) separations; this flux ratio limit translates into a companion mass limit of 0.1 M_{\odot} for our target stars
- reject stellar binarity as the dominant mechanism in creating a transitional disk appearance

10

Resolving the inner disk emission

- Simple star+ring model constrains the emission size
- Inclination cannot be fitted reliably with one baseline, but targets are ≤ 60 degr
- Prior estimation of NIR-excess is required (and limits) the precision of the size constraint
- For GM Aur, LkCa15, RY Tau, the derived ring radius is 0.1-0.2 AU
- UX Tau A is marginally resolved, with radius < 0.1AU
- 4 of 5 targets show NIR excess emission at radii consistent with the gap SED models

We zoom into the innermost disk

Resolving the inner disk emission

- For DM Tau, the fifth target, we derive a lower limit: ≥0.2 AU
- KI data proves that there is extended emission, but the target could be overresolved
- The SED is consistent with no NIR excess (≤ 5%)
 -> the extended emission could be scattered star light or hot dust emission below the detection precision of SED models
- The lower limit is still consistent with the gap model, but a fully cleared hole and advanced disk dissipation is equally likely
- Interferometer is very sensitive to extended emission

Contact: Jorg-Uwe Pott, MPIA, jpott@mpia.de

Upper FR limit, which translates into a lower radius limit of > 0.2 AU

Summary

- In general, close binaries do not create the transitional disk SED, thus the conception of catching disk dissipation "in the act" seems to be true
- Systems like CoKu Tau/4 appear to be the exception not the rule
- Four out of five targets show emission at radii < 0.2 AU, in addition to the colder MIR-disk, confined to radii of 10 AU and larger. This supports the gap-scenario, and planet formation as reason for the dust depletion
- Outlook: the here presented data and results are soon online in Pott et al. 09 (ApJ in press); the new data on three Ophiuchus transitional disks seem to confirm this result, but this is still work in progress...

13