Gas and dust spatial distribution in proto-planetary discs

Olja Panić^{1,2}

M.R.Hogerheijde¹, D.Wilner³, C.Qi³, E. van Dishoeck^{1,4}, B. Merín⁵

¹Leiden Observatory; ²European Southern Observatory; ³Harvard-Smithsonian Center for Astrophysics; ⁴Max-Planck Institut für Extraterrestrische Physik ; ⁵European Space Astronomy Centre;

<u>Why study the gas and dust</u> <u>distribution in discs:</u>

- Physical processes during disc evolution may alter the relative distribution of gas and dust
- Disc size is a key parameter when assessing disc mass
- To understand where the emission arises from is necessary to interpret a wealth of (spatially unresolved) observations that are available (e.g. SEDs)

Leiden Observatory, Leiden University

Disc imaging from nIR to mm

Disc around the T Tauri star IM Lup:

Larger by 500 AU than expected from detailed dust modelling

Observations

SMA observations of ¹²CO, ¹³CO, and C¹⁸O J=2—1 line (~230GHz,~1.3mm)

Dust model $\sum \propto R^{-1}$ R = 400 AU

Our model

Drop in density close to 400AU 20-30K temperature beyond 400AU

Possible astrophysical implications:

- Efficient radial drift of small dust in the outer disc (talk by C.Dullemond) + photodissociation
- Presence of a companion at 400 AU
- Outermost disc material did not participate in the viscous spreading?

Leiden Observatory, Leiden University

Weak line T Tauri star DoAr21: transitional SED,

weak mm fluxes but strong H_2

Leiden Observatory, Leiden University

VLT/SINFONI imaging of the H_2 2.12 μ m emission

reveals a surprising structure

- Inner 70 AU appear to be devoid of gas
- Emission confined to an arc on the NW side of the star

Leiden Observatory, Leiden University

VLT/VISIR warm dust imaging at 18 µm

confirms the asymmetric distribution

100-200 K warm dust

Emission distribution coincident with that of the H_2

Star photosphere is also detected (~50/50%)

Astrophysical implications:

- nIR H₂ lines can be efficiently excited up to 200 AU from the star
 - \rightarrow In low-mass discs, near-IR H2 lines may provide means to image the gas.
- Imaging is necessary to confirm the presence and size of a hole inferred from a "transitional" SED

 $T(R) = T_{100} (R / 100 AU)^{-q}$ q = 0.5 $T_{100} = 60K$ $\Sigma(R) = \Sigma_{100} (R / 100 AU)^{-p}$ p = 1

 $FWHM = f(M_*, i, R)$ $\int Idv = f(T, R, N)$

free parameters: R, i

We use a sample of 25 gas-rich discs around Herbig Ae stars and their CO 3-2 spectra from Dent et al. 2005.

Modelling low-J CO lines from Herbig Ae discs

HD100546: CO line spectrum and disc size

Astrophysical implications:

Most discs around HAe stars are small (<200 AU)
→ warm enough to prevent CO freeze-out
→ CO may be used to measure the gas mass directly (as in Panić et al. 2008)

Main conclusions

The spatial distribution of the gas cannot be inferred from dust observations alone, and may be much more extended. Panić et al. 2009, A&A

 Fluorescent H₂ 2.12µm line can be used to trace disc geometry.
Hogerheijde et al. 2009, A&A subm.

Gas mass can be constrained in discs that are sufficiently small (~200 AU) and warm (>20 K, most Herbig Ae stars). Panić et al. 2008, A&A, Panić et al. 2009 in press, A&A