Direct detection of sub-stellar companions in young stars with disks

Ralph Neuhäuser

with Tobias Schmidt, Simone Fiedler, Martin Reidemeister, Katharina Schreyer (Jena), Andreas Seifahrt (now UC Davis)

Astrophysikalisches Institut und Universitäts-Sternwarte <u>www.exoplanet.de</u> <u>www.astro.uni-jena.de</u> Friedrich-Schiller-Universität Jena

Topics:

- → Homogeneous mass determination of planet candidates imaged directly
- Stability of star + planet(s) (+ disk) systems, in particular HR 8799
- → Sub-stellar companion and disk around CT Cha (new 3mm data)

The brown dwarf desert: 20 to 50 Jup masses

Lineweaver & Grether 2006

Objects below ~ 35 Jup masses form *differently*, i.e. planets ...

Luminosity vs. age (stars, brown dwarfs, and planets)

(Burrows et al. tracks for masses 10 to 70 M_jup)

Determination of mass

By comparison with evolutionary models & tracks (hot start)

Observables: Luminosity L Temperature T Gravity log g Radius R Age (of host star)

Model yields <u>mass</u> of the companion

Example given here: GQ Lup b and Burrows et al. 1997 models

→ 20-25 M_jup (4 to 36 M_jup), figure from Andreas Seifahrt PhD thesis (red: 25 Jup)

Calibrating tracks with eclipsing double-lined brown dwarf – brown dwarf binary (2M0535 in Orion region, i.e. few Myr)

Masses from Kepler's 3rd law:
A has 59.5 ± 4.8 M_jup but spots
B has 37.5 ± 2.9 M_jup
(Stassun et al. 2007 Nat. & ApJ)

Observables:					
Object	Luminosity	Magnitude	Temperature	Age	References
name	$\log(L_{\rm bd}/L_{\odot})$	M _K [mag]	T _{eff} [K]	[Myrs]	

Reference object (eSB2 brown dwarf - brown dwarf binary 2M0535):

2M0535 A	-1.65 ± 0.07	5.29 ± 0.16	2715 ± 100	0.1-3	Stassun 07
в	-1.83 ± 0.07	5.29 ± 0.16	2820 ± 105	0.1-3	Stassun 07

Directly detected planet candidates:

DH Tau b	-2.75 ± 0.10	8.31 ± 0.23	2750 ± 50	0.1-4	Itoh 05
GQ Lup b	-2.38 ± 0.25	7.67 ± 0.16	2650 ± 100	0.1-3	Neuh. 05
2M1207 A	-2.76 ± 0.05	8.35 ± 0.05	2425 ± 160	5-12	Chau. 05a
Ъ	-4.75 ± 0.06	13.33 ± 0.12	1590 ± 280	5-12	Chau. 05a
AB Pic b	-3.76 ± 0.06	10.85 ± 0.11	2040 ± 160	20-40	Chau. 05b
CT Cha b	-2.68 ± 0.21	8.83 ± 0.50	2600 ± 250	0.1-4	Schmidt 08
1RXSJ1609 b	-3.57 ± 0.15	10.36 ± 0.35	early L	1-10	Lafr. 08
HR 8799 b	-5.1 ± 0.1	12.66 ± 0.11		30-1000	Mar. 08
с	-4.7 ± 0.1	11.74 ± 0.09		30-1000	Mar. 08
đ	-4.7 ± 0.1	11.56 ± 0.16		30-1000	Mar. 08
Fom b	≤ -6.5	$M_{\rm H} \ge 23.5$		100-300	Маг. 08
β Pic b		$M_{\mathrm{L}'}=9.8\pm0.3$		8-20	Lagr. 09

Model derived masses:					
Object	Burrows 1997	Chabrier 2000	Baraffe 2003	Marley 2007	Baraffe 2008
name	(L, age)	(L, T, K, age)	(L, T, K, age)	(≥ 10 Jup)	(≥10 Myrs)

Reference object (eSB2 brown dwarf - brown dwarf binary 2M0335):

2M0535 A	50 (45-60)	55 (30-60)	50 (45-80)	
В	37 (33-46)	45 (40-50)	43 (40-65)	true 37.5 jup

(Schmidt, RN, Seifahrt, Conf. Proc., astro-ph)

(Schmidt, Neuhäuser, Seifahrt, 2009, AIP Conf. Proc. 1158, 231, also on astro-ph)

Problem: Hot-start model tracks may not be valid for objects younger than ~ 10 Myrs

CT Cha b and Drift-Phoenix:

- T= 2600 K ± 250 K
- $A_V = 5.8 \pm 0.8$ mag
- $Log g = 4.0 \pm 0.5 dex$
- ➔ Mag, A_V and distance give luminosity L
- ➔ L and T give radius (~ 2.2 ± 0.7 R_jup)
- \rightarrow L, T, R, and g give mass:
 - ~ 17 + 6 M iun

(planet or BD ?)

 \rightarrow massive large disks (?) \rightarrow wide sub-stellar companions could form in disk instability (?)

<u>Conclusion:</u> Given the age ranges and all models, Planet status is dubious in all cases but maybe Fomalhaut b and HR 8799 bcd

<u>Problem:</u> Hot-start models differ a lot and may not be valid below ~ 10 Myrs

Solution: Fitting higher-resolution spectra to model atmospheres \rightarrow T, Av, and g Mag, Av, and distance give luminosity L L & T give radius R then <u>R & g give mass</u>

<u>Problem here:</u> Gravity determination not yet precise enough (± 0.5 dex)

Direct imaging planets can constrain and probe

Planet formation time-scale (youngest star with planet)
 Migration scenarios (most exo-Jupiters at snow line ?)

8.41 day rotation period with two bright spots !

Rotation period, v sin i, and radius

(from Stefan-Boltzmann law with luminosity and temperature) yield inclination of GQ Lup A (and its disk) to be ~ 27 5 degrees from pole-on (26 to 39 deg, if up to half the luminosity is from disk accretion).

(Broeg, Schmidt, Guenther, Gaedke, Bedalov, Neuhäuser, Walter, 2007, A&A)

GQ Lup observed with CRIRES, compared to radiative transfer Disk model,

gives 22 deg disk inclination (Hügelmeyer et al. 2009 A&A)

At inner disk at 0.052 to 0.5 AU, Accretion rate 3e-9 Msun / yr

Large radio beams

Result

