Can disks form deuterium burning planets by core accretion?

C. Mordasini, Y. Alibert, W. Benz, H. Klahr, T. Henning

Garching, 6.11.2009 From circumstellar disks to planetary systems

CORRELATIONS WITH DISK PROPERTIES

UPPER END "PLANETARY" MASS DISTRIBUTION

Planetary mass distribution.

80 円

MAXIMAL PLANET MASS - GAS ACCRETION

Low Mass Planets (M<30-100 M_{earth})

Limited by the planet itself, i.e. its ability to radiate away the energy released through the gravitational contraction of the gaseous envelope (Kelvin-Helmholtz timescale).

$$\frac{dM_{\rm p,g}}{dt} \simeq \frac{M_{\rm p}}{\tau_{\rm KH}} \qquad \tau_{\rm KH} \simeq 10^9 \left(\frac{M_{\rm p}}{M_{\oplus}}\right)^{-3} \text{ years.}$$

High Mass Planets (M>30-100 M_{earth})

The planet structure takes whatever the disk can feed. Limitation by global effects (disk dissipation, viscous transport to the planet) and/or local gas depletion (gap formation).

Obviously, cannot grow larger than total (late) disk (<0.1 $M_{star} \approx 100 M_J$)

Y GAP FORMATION ?

M

-1.5

Sufficiently massive planets $(>3-5 M_I)$ can cause a sudden transition of the disk state from circular to eccentric.

•*Eccentricity excitation at 1:3 outer* Lindblad resonance is no more damped at 1:2 for sufficiently wide gaps, i.e. massive planets.

See also Papaloizou et al. 2001

 $\frac{dM_{gas}}{dt} = \dot{M}_{disk}$

(Disk accretion rate)

Test Global Consequences

No limitation due to gap formation. "Extreme Kley-Dirksen way"

With limitation "Lubow et al. way"

Mstar=1 Msun f₁=0.001 No irradiation

As expected,

strong influence

for planets $\gtrsim 6$

NATURE OF THE OBJECTS

Internal composition

Core masses typically 100 M_{earth} , up to 300 M_{earth} .

Pressure and temperature high enough in layers above the core to burn deuterium ?

Baraffe, Chabrier & Barman 2008

"... We have considered a 25 M_J planet with a 100 M_{\oplus} core. Independently of the composition of the core material (water or rock), deuterium-fusion ignition does occur in the layers above the core. ... The same conclusion holds for a core mass of several 100 M_{\oplus}"

Deuterium Burning Planets

New class of transition objects: Burn deuterium (like brown dwarfs), but have a formation and composition like planets.

OBSERVATIONAL HINTS?

Hints I: Radius Constraints

CoRoT Exo 3b: 21.7 MJ

Problem: Relative enrichment goes down with mass: very large planets are very efficient in ejecting planetesimal (rather than accreting them). Maybe different for collision scenario (Baraffe et al. 2008).

Gets more difficult to distinguish.

HINTS II: METALLICITY CONSTRAINTS

Not true for more massive stars.

Must build-up core very quickly.

Conclusions

- Can disks form deuterium burning planets by core accretion?
 Yes, IF eccentric instability mechanism occurs.
 - Interesting class of new objects between planets and brown dwarfs.
 Make the 13 M_J distinction even obscurer (cf. Chabrier et al. 2006)
 Only if [Fe/H] > -0.2, M_{disk} >3 M_{MMSN}, T_{disk}>2 Myr.
 Inside 10 AU.
 - Rather low eccentricities e<0.25.
 - (Slightly) smaller radius than brown dwarfs.
- Deuterium burning: depending not only on total mass
 Internal composition matters (a little bit).
 - ► D-burning delays decrease of luminosity for first \approx 10 Myr (compared to contraction only).
- •Slope of high mass end of planetary IMF.
 - Imprint of disk properties? (cf. core mass function stellar IMF)