## Formation and early evolution of disks

Jes Jørgensen Argelander-Institute for Astronomy, University of Bonn

# The evolution of low-mass YSOs



after Shu et al. 1987

Low-mass stars formed from gravitational collapse of dense cloud cores.

Gradual dispersal of protostellar envelope (disk accretion; outflow action).

When do circumstellar disks form? How rapidly is material accreted onto the central star?

Deep mid-infrared and/or high angular resolution (sub)mm wavelength observations required to disentangle/probe emission on disk scales



## NGC 1333

#### JCMT/SCUBA 850 µm

Sandell & Knee 2001 H. Kirk e.a. 2006

Spitzer 3.6, 4.5 and 8  $\mu$ m

J.K. Jørgensen e.a. 2006 R.A. Gutermuth e.a. 2008

B, V, I and H $\alpha$  (visible)

T.A. Rector/University of Alaska Anchorage, H. Schweiker/WIYN and NOAO/AURA/NSF

## A few statements about protostars

- Protostars are under-luminous compared to accretion of the large-scale envelope directly onto a central star (episodic accretion important?)
- The Class 0 stage last longer than previously thought (10<sup>5</sup> vs. 10<sup>4</sup> years).



## A few statements about protostars

- Protostars are under-luminous compared to accretion of the large-scale envelope directly onto a central star (episodic accretion important?)
- The Class 0 stage last longer than previously thought (10<sup>5</sup> vs. 10<sup>4</sup> years).
- Protostars loose their envelopes in a few 10<sup>5</sup> years.

Fraction of c2d YSOs within 15" of a SCUBA core ( $M_{env} \ge 0.1 M_{\odot}$ ). *Jørgensen et al.* (2008)

|      | Perseus     | Ophiuchus   |
|------|-------------|-------------|
| 0    | 100% (def.) | 100% (def.) |
| Ι    | 58%         | 47%         |
| Flat | 10%         | 9%          |
| II   | 1%          | 3%          |

• Protostars drive outflows.

## Column density and mass

- Typical envelopes have  $n \propto r^{-p}$  with  $p \approx 1.5$ -2.0.
- The mass is on large scales (single-dish beam) whereas the line of sight column density/extinction is on small scales (IR pencil-beam).

When looking inwards, at what radius do envelopes become optically thick?



## Mid-infrared "excesses" generally seen





If "inner cavity" is introduced (i.e., inner radius wherein envelope profile flattens), the SED is wellreproduced. Otherwise envelope severely optically thick at mid-IR wavelengths; not enough emission escapes from the central source(s). Radii correspond well to size of binary/disk structures.

## Mid-infrared "excesses" generally seen



Protostellar envelopes are not (even) optically thick at 10-20  $\mu$ m.



![](_page_7_Figure_4.jpeg)

If "inner cavity" is introduced (i.e., inner radius wherein envelope profile flattens), the SED is wellreproduced. Otherwise envelope severely optically thick at mid-IR wavelengths; not enough emission escapes from the central source(s). Radii correspond well to size of binary/disk structures.

## Mass of circumstellar disks from continuum obs.

![](_page_8_Figure_1.jpeg)

![](_page_9_Figure_0.jpeg)

Evolution of interferometric continuum flux for collapsing model (Visser et al., 2009; Cassen & Moosman 1981; Terebey et al. 1984)

## Millimeter continuum searches for embedded disks

#### - a few studies -

Keene & Masson (1990): Detection of excess emission at long baselines in the embedded protostar L1551-IRS5.

Terebey et al. (1993): 10 low-mass low-mass YSOs observed with OVRO at about 7" resolution combined with IRAM 30 m 1.3 mm data; analysis within Terebey, Shu & Cassen (1984) model for collapsing, rotating core. Massive (M > 0.5  $M_{\odot}$ ) circumstellar structures rare, but OVRO emission usually dominated by spatially unresolved component.

Hogerheijde+ (2000, 2001): Radiative transfer modeling of SCUBA envelopes, inferring the presence of disks from OVRO obs.

Looney et al. (2000, 2003): BIMA survey of Class 0 and I sources, multiplicity, and analytic fits. Low disk/envelope mass ratios → fast processing of material (>85% of continuum flux ~ envelope).

## Millimeter continuum searches for embedded disks

Keene & Masson (1990): Detection embedded protostar L1551-IRS

Terebey et al. (1993): 10 low-mass lo 7" resolution combined with IRA Shu & Cassen (1984) model for ( $M_{\odot}$ ) circumstellar structures rare spatially unresolved component.

Hogerheijde+ (2000, 2001): Radiativ inferring the presence of disks fr

Looney et al. (2000, 2003): BIMA su analytic fits. Low disk/envelope (>85% of continuum flux ~ enve

![](_page_11_Figure_5.jpeg)

FIG. 3.—The observed 2.73 mm visibilities. The dashed line shows the visibilities resulting from an envelope with 0.29 Jy total flux and with a volume emissivity  $\propto r^{-2}$ . The solid line shows the visibilities resulting from a similar envelope with a flux of 0.14 Jy plus a compact Gaussian source with a flux of 0.15 Jy (for a total flux of 0.29 Jy) and a half-power radius of 0.74. It is obvious that the two-component model fits the data much better than a simple power-law source.

#### Resolved disks...?

 Brown et al. (2000): survey of 0.8 mm continuum emission from embedded YSOs with the JCMT +CSO interferometer. Resolved 1" structures in 3 Class 0 protostars.

![](_page_12_Figure_2.jpeg)

#### Resolved disks...?

- Brown et al. (2000): survey of 0.8 mm continuum emission from embedded YSOs with the JCMT +CSO interferometer. Resolved 1" structures in 3 Class 0 protostars.
- Jørgensen et al. (2005): SMA observations of NGC1333-IRAS2A coupled with radiative transfer model of SCUBA envelope ⇒ 300 AU diameter disk.

![](_page_13_Figure_3.jpeg)

Jørgensen et al. (2005)

#### Resolved disks...?

- Brown et al. (2000): survey of 0.8 mm continuum emission from embedded YSOs with the JCMT +CSO interferometer. Resolved 1" structures in 3 Class 0 protostars.
- Jørgensen et al. (2005): SMA observations of NGC1333-IRAS2A coupled with radiative transfer model of SCUBA envelope ⇒ 300 AU diameter disk.
- Enoch et al., in press.: CARMA observations of Serpens SMM1: massive (1.0 M<sub>☉</sub>; 300 AU radius disk. A steep envelope density profile remove the need for such a disk, but not consistent with SED (i.p., mid-IR).

![](_page_14_Figure_4.jpeg)

#### Mass evolution of low-mass stars

SMA survey of emission (~1") from 20 embedded YSOs (Jørgensen et al. 2009)

![](_page_15_Figure_2.jpeg)

Disks around Class I sources are not more massive than those around the younger Class 0's  $\Rightarrow$  rapid disk formation and growth.

#### Mass evolution of low-mass stars

SMA survey of emission (~1") from 20 embedded YSOs (Jørgensen et al. 2009)

![](_page_16_Figure_2.jpeg)

Disks around Class I sources are not more massive than those around the younger Class 0's  $\Rightarrow$  rapid disk formation and growth.

#### ... or other density enhancement on small scales?

- Magnetic collapse models by Tassis & Mouschovias (2005). Formation of enhanced magnetic field, resulting in a shock progressing outwards. Accretion/formation of magnetic shock wall proceeds sequentially.
- Modeling of 4 YSOs from sample of Looney et al.; remove the need of central accretion disks (or place upper limits on their masses, 0.1  $M_{\odot}$ )

![](_page_17_Figure_3.jpeg)

#### ... or other density enhancement on small scales?

- Magnetic collapse models by Tassis & Mouschovias (2005). Formation of enhanced magnetic field, resulting in a shock progressing outwards. Accretion/formation of magnetic shock wall proceeds sequentially.
- Modeling of 4 YSOs from sample of Looney et al.; remove the need of central accretion disks (or place upper limits on their masses, 0.1  $M_{\odot}$ )

![](_page_18_Figure_3.jpeg)

#### Other model descriptions?

- Vorobyov et al. (2009): models of self-gravitating and viscous disks in hydrodynamical simulations ("burst accretion"). Little difference between Class 0 and I disk masses; significant decline in disk masses toward Class II stage in viscous models.
- Clearly other discriminators necessary to separate models.

![](_page_19_Figure_3.jpeg)

# $M = \frac{F_{\nu} D^2}{\kappa_{\nu} B_{\nu}(T_d)}$

## Do we understand dust?

 Grain-growth in dense envelope/disk material could change the mm dust opacity systematically.

![](_page_20_Figure_3.jpeg)

see also d'Alessio et al. (2001)

#### Do we understand dust?

- Grain-growth in dense envelope/disk material could change the mm dust opacity systematically.
- Evidence for "non-ISM" spectral indices on smallscales in the disks of Class 0 protostars surveyed in the PROSAC SMA data (Jørgensen et al. 2007).

![](_page_21_Figure_3.jpeg)

Jørgensen et al. (2007)

 $M = \frac{F_{\nu} D^2}{\kappa_{\nu} B_{\nu}(T_d)}$ 

#### Do we understand dust?

 $M = \frac{F_{\nu} D^2}{\kappa_{\nu} B_{\nu}(T_d)}$ 

- Grain-growth in dense envelope/disk material could change the mm dust opacity systematically.
- Evidence for "non-ISM" spectral indices on smallscales in the disks of Class 0 protostars surveyed in the PROSAC SMA data (Jørgensen et al. 2007).
- Possibly radial variation in β in extended emission in CARMA observations of 3 Class 0 protostars (Kwon et al. 2009)

![](_page_22_Figure_5.jpeg)

Kwon et al. (2009)

# Do we understand temperatures?

• Changes in disk temperatures as they grow in size or mass may also introduce systematic uncertainties in dust derived masses.

 $M = \frac{F_{\nu} D^2}{\kappa_{\nu} B_{\nu} (T_d)}$ 

![](_page_23_Figure_2.jpeg)

• Left: relation between disk masses and submillimeter "interferometric" fluxes in models of Visser et al. (2009; solid lines) as well as in typical adopted observed relations. *Right:* temperature of disk at 200 AU along rays with different inclination angles as function of time. *Figures from Jørgensen et al. (2009)* 

#### Lines: dynamics in disks

![](_page_24_Figure_1.jpeg)

Keplerian rot. patterns in HCO<sup>+</sup> 3-2 emission in Class I sources confirm disk structure and allow direct estimate of stellar masses *(examples from Brinch et al. 2007; Lommen et al. 2008; Jørgensen et al. 2009).* Picture for Class 0 sources less clear (lines optically thick in envelopes + time-scale?; *Brinch et al. 2009*).

#### Lines: dynamics (and chemistry) in disks

#### NGC1333-IRAS4B in Perseus

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

## Summary

- High-angular resolution (sub)millimeter wavelength and mid-infrared observations, coupled with detailed radiative transfer models of available multi-wavelength data reveal the structure of protostars from 10,000 to ~100 AU scales.
  - *mid-IR:* Inner envelopes (presence of "cavities") possibly reflects the disk formation.
  - submm: Density enhancements in protostars on few hundred AU scales: either presence of disks with significant masses (~0.05 M<sub>☉</sub>) and sizes (~100 AU), i.e., rapid formation and growth or enhancements due to "magnetic shocks".
  - Note: possible systematic errors due to temperature and/or dust evolution.
- Resolved line observations provide means to break model degeneracies and address the systematic uncertainties. In addition, such data provide crucial constraints on disk dynamics (stellar masses) and/or chemistry (cf. HCO<sup>+</sup> and H<sub>2</sub>O line images of Class I and 0 disks, respectively).