Constraining disk models with (spatially resolved) observations of the inner and outer disk

Andrea Isella

Michelson Postdoctoral Fellow 2007 Caltech

TALK OUTLINE

- Interferometric observations of inner disk structure (<10 AU)
 - challenges for inner disk models
- Spatially resolved observations of the outer disk (>10 AU) through (sub)millimeter interferometry
 - constraining the surface density
 - grain growth and radial dependece of the dust opacity

Disk Structure 101 The spectral energy distribution

Disk Structure 101 The spectral energy distribution

Different wavelengths trace different disk regions

Resolving the disk emission

Inner disk – near-IR interferometry

The visibility measures angular scales

Millan-Gabet et al. (2001)

Inner disk radius & dust sublimation

Millan-Gabet et al. (2001, 2008)

"Puffed-up" inner rim

 $T(r) = T_{evp} \approx 1500K$

"Puffed-up" inner rim

Agreement with the observations

Eisner et al. (2004, 2005) Isella et al. (2006)

Monnier et al. (2006)

The "puffed-up" inner rim is not enough

Evidence of hot material inside the rim

Isella et al. (2008)

Evidence of hot material inside the rim

Benisty et al. (2009, A&A in press) – Tannirkulam et al (2008)

HD 163296

Spatially resolved spectroscopy of the inner disk

Benisty et al. (2009)

What is the nature of the material within the dust sublimation radius?

M. Benisty's talk!

Image reconstruction

Flaring Vs Self-shadowing

Dullemond et al. (2004), Meeus et al. (2001)

Disks @ mm wavelengths

Spatially resolved observations of the outer disk

0.7" resolution

Distance of 140 pc

0.30"

0.15"

Spatially resolved observations of the outer disk

CARMA survey @ 1.3 mm 0.4"-0.8" resolution

SMA survey @ 0.85 mm 0.3"-0.5" resolution

Andrews, Wilner, Hughes, Qi, Dullemond (2009)

All disks resolved

Disks @ 0.15" resolution CARMA 230 GHz

Isella, Carpenter & Sargent (in prep.)

Viscous disk evolution

Observations Vs Models

Observations

Observations - Model

Example: RY Tau

Surface density

Disentangling surface density models

Isella et al., in prep.

Similarity solution

i (°)	PA (°)	R_t (AU)	γ	$\Sigma_t \ (g/cm^2)$	χ^2_r
66 ± 2	24 ± 3	26.7 ± 1.2	-0.54 ± 0.18	$2.6{\pm}0.2$	1.0896
	P	ower law,	$\Sigma \propto R^{-p}, R_{in}$	$< R < R_d$	
i (°)	PA (°)	R_d (AU)	р	$\Sigma_{40}~(g/cm^2)$	χ^2_r
66 ± 2	24 ± 3	70.6 ± 3.9	$0.12 {\pm} 0.15$	$1.9{\pm}0.6$	1.0897
Andrea Isella :: From circumstellar disks to planetary systems :: Garching, 3-6 November					

Disentangling surface density models

Grain growth

Does the dust opacity vary with radius?

 $F_{\nu}(R) \propto B_{\nu}(T,R) \cdot \Sigma(R) \cdot k_{\nu}(R)$

 $k_{1.3}(R) = k_{2.8}(R) \left(\frac{2.8}{1.3}\right)^{\beta}$ $\beta(R)$ $\frac{F_{1.3}(R)}{F_{2.8}(R)} \propto \frac{k_{1.3}(R)}{k_{2.8}(R)} \propto \left(\frac{2.8}{1.3}\right)$

Does particle opacity vary with radius?

Isella et al., in prep.

- β is lower than found for the interstellar medium
- No evidence for radial gradient in β

Summary

Inner disk – 1 to 10 AU

 The "puffed-up" inner rim model reproduces the K-band emission and it is in agreement with the disk structure inferred from mid-infrared interferometry
But, an additional component is required to fit the H band data. The nature of this component is still uncertain

Outer disk > 10 AU

1. From the constrain of the surface density it appears that $\gamma < 1$. This implies that α decreases with the radius.

2. (a) 0.15" resolution we can constrain the surface density between 10 and 50 AU. 3. Actual observations does widely constrain the radial variation of the slope of dust opacity β . In DG Tau and RY Tau β is smaller than 1.7, between 20 and 70 AU.

Thank you