Dynamical Modelling of Outflows/Jets, Disk Formation, and Dispersal

Shu-ichiro Inutsuka (Nagoya Univ.)

November 4th, 2009 @Garching

M. Machida

Outline

- Introduction: 2 Basic Problems in SF
- 1st Collapse \rightarrow 1st Core 2nd Collapse \rightarrow 2nd Core=Protostar
- Outflows vs. Jets Properties & Driving Mechanism
	- Witnessing Magnetic Flux Loss
	- Formation of PPD and Fragmentation
	- Dispersal of PPD

Basic Problems in Star Formation

1. Angular Momentum Problem:

Protostar:

 $h_* = \Omega_* R_*^2 \sim (10^{11} \text{cm})^2/(10^5 \text{s}) \sim 10^{17} \text{cm}^2/\text{s}$

Molecular Cloud:

$$
h_{\text{core}} = \delta v_{\text{core}} R_{\text{core}} \sim 0.1 \text{km/s} \times 10^{17} \text{cm} \sim 10^{21} \text{cm}^2/\text{s}
$$

$$
\Rightarrow h_* \sim 10^{-4} h_{\text{core}}
$$

2. Magnetic Flux Problem Protostar: $\Phi_* \sim B_* R_*^2 \sim kG \times (10^{11} \text{cm})^2$ Molecular Cloud: $\Phi_{\text{core}} \sim B_{\text{core}} R_{\text{core}}^2 \sim 10 \mu G \times (10^{17} \text{cm})^2$ $\rightarrow \Phi_* \sim 10^{-4} \Phi_{\text{core}}$

Outflows vs Jets

■Outflow and Jet are ubiquitous in the star-forming region.

Outflow:**low velocity** (~10 km/s), 10-1000 AU, **Wide opening angle**

Jet: **high velocity** (~100 km/s), 100-105 AU, **well-collimated structure**

□It is difficult to observe the driving point.

small scale, embedded in the dense cloud core

Early Phase of Protostar

Machida et al. (2006-2009), Banerjee & Pudritz (2006), Hennebelle & Fromang (2008)

Outflows & Jets are Natural By-Products!

Temperature Evolution at Center

Effect of Non-Ideal MHD

Weakly Ionized Gas

- Low density… Ambipolar Diffusion
- Intermediate…
	- Hall Current Effect
- High density… Ohmic Dissipation

Stage 1: **Outflow** driven from the **first core** The evolution of the Outflow around the first core Model for \triangleright This animation start after the first core is formed at n~10¹⁰ cm⁻³ (α, ω) =1, 0.3 Grid level L =12 (Side on view) Grid level L =12 (Top on view) Log T(K) **Isothermal Phase Adiabatic Phase** Second Collapse & To MS 104 103 **Outflow Driving Phase** 102 **L = 12 (360AU)** 10 **Gas Temperature** Log n (cm -3) $\frac{1}{10^{10}}$ 1015 $10₅$ $7n20$ Spacial Scale (AU) $\overline{10^4}$ 100 1 0.1 **360 AU**

Stage 3: **Jet** driven from the **protostar**

Difference in Driving Mechanism

Magnetocentrifugally driven Wind

Wide Opening Angle

outflow around first core $B_r \approx B_z \approx B_\phi$

Magnetic Pressure driven Wind

Narrow Opening Angle

jet around protostar $B_{\rm z}$ << B_{ϕ}

Discussion: Speeding-Up of Outflow/Jet

 \triangleright These velocities correspond to escape velocity from the first core and protostar

 \checkmark First core: ~0.01 M_{sun}, 1 AU (in our 3D calculation)

 \checkmark Protostar: ~0.01 M_{sun}, ~1 R_{sun} (in our 3D our calculation)

 \triangleright When the mass of each core increases up to 1 M_{sun}, the speed of the outflow and jet will increase by a factor 10 ($v_{\text{kepler}} \propto M^{1/2}$)... good agreement with obs.

 \checkmark Outflow: ~5 km/s (0.01 Msun) ⇒ ~50 km/s (1 M_{sun})

 \checkmark Jet: ~50 km/s (0.01 Msun) \Rightarrow ~500 km/s (1 M_{sun})

Differences of speeds are due to differences of escape velocities from the first core and protostar

Machida, SI, Matsumoto (2008) ApJ **676**, 1088

Summary of Our Theory

Evolution from $n = 10^4$ cm⁻³ to $n \sim 10^{24}$ cm⁻³.

◆ Two different flows (outflow/jet) appear in the collapsing cloud owing to the Stiffening of EoS.

≻Outflow driven by the first core has wide opening angle and slow speed.

 \triangleright Jet driven by the protostar has well-collimated structure and high speed.

◆ The velocities of the outflow and jet correspond to the escape speeds from the first core, and protostar.

Machida, SI, Matsumoto (2008) ApJ **676**, 1088

Q1:How to Measure Ang. Mom. Reduction

Non-LTE radiative transfer calc.

 \rightarrow Comparison with ALMA Observation

→ Solution to Angular Momentum Problem in Star Formation

Non-LTE Radiative Transfer Calc. $\frac{1000}{200}$ 000 ..
8 **SiO(4-3), 30**° **tilted**)09
ອ 900 $\overline{0}$ ូរ م
تا Vr [km sec 1]

 SiO & CO… Yamada, Machida, SI, & Tomisaka (2009) ApJ **703**, 1141

We hope that

ALMA will determine launching points of outflows and jets, and testify evolutionary model and driving mechanism.

→ Solution to Angular Momentum Problem in Star Formation

If yes,

what can we do next?

Rotation of Outflow Observed?

Transfer Calc. with Our Simulation, 30deg tilted

∊

 500

500

Fig. 3. ¹²CO (2-1) integrated intensity maps (contours) and mean velocity field (1st moment map, color) of CB 26, rotated by 30^o. White contours show the 1.1 mm dust continuum emission from the disk as observed with the SMA (contour levels same as Fig. II). The ¹²CO synthesized beam size is shown as large grey ellipse. The smaller and darker ellipse shows the 1.1 mm continuum beam.
Left panel: observations. Right panel: best-fit model for ¹²CO (2-1). Dashed lines refer t diagrams shown in Fig. 4

Launhardt et al. (2008, arXiv:08113910)

Q2: Obs of Magnetic Flux Loss?

Magnetic flux largely removed from First Core when $n = 10^{12} \sim 10^{16}$ cm⁻³ $\rightarrow B = kG$ or less

Can we observe this by ALMA?

History of Ionization Degree

Because of uncertainty of dust grain properties, we have parameterized resistivity.

Effect of Changing Resistivity Parameter

density snapshot at very early phase of outflow in 3 models

Increasing Resistivity Parameter

Velocity Profile (V_z) Effect of Changing Resistivity Parameter

Increasing Resistivity Parameter

Proposals for ALMA Obs.

●Outflow from First Core Launch at large radius $\leftarrow \rightarrow$ Other Models **• Fast Jet from Second Core** Reduced Magnetic Flux → Winding-Up Well-Collimated from The Beginning ← → Magneto-Centrifugally Driven Model

Detailed Comparison with Simulations → Witnessing Magnetic Flux Loss from Central Object

Bimodal Binary Formation

Star Formation Theory Extended

Rapid Progress in Our Understanding of Formation of Protostars

- → Further Evolution to Formation/Evolution of Protoplanetary Disks
- \rightarrow Star formation process determines Initial Condition of Planet Formation!

Early Phase of Protostar

Machida et al. (2006)

We have good understanding up to $M = 0.1 M_{\odot}$!

Formation of Planetary Mass Companions in Protoplanetary Disk

Machida, SI, Matsumoto (2009)

Formation of Planetary Mass Companions in Protoplanetary Disk

Resistive MHD Calc. from Mole. Cloud Core

Formation of Planetary Mass Companions in Protoplanetary Disk

Evolution of Stellar Mass & Disk Mass

SI, Machida, & Matsumoto (2009)

Local Criterion for Gravitational Instability: $Q \equiv \kappa C_s /(\pi G \Sigma)$

Gap in Mass Distribution?

Brown Dwarf Desert:

 $M \sin(i) < 0.01 M_{\odot}$

- $M \sin(i) > 0.01 M_{\odot}$
- \rightarrow different formation mechanism?
- \rightarrow Smaller mass objects are formed by core accretion model?

Good Interpretation?

Mass Function of Companions

Eccentricity Distribution of Exo-Planets

> Ribas & Miralda-Escudé (2007)

Metallicity Dependence?

(2007)

Fig. 4. Mass versus metallicity for the substellar objects in the sample. Mean metallicity values for the two proposed populations (minimum mass above and below 4 M_J) are represented by the horizontal lines (with the corresponding error bars shown as dotted lines).

Gap in Mass Distribution?

Brown Dwarf Desert:

 $M \sin(i) < 0.01 M_{\odot}$

- $M \sin(i) > 0.01 M_{\odot}$
- \rightarrow different formation mechanism?
- \rightarrow Smaller mass objects are formed by core accretion model?

Good Interpretation?

Mass Function of Companions

Binary Frequency

Fragmentation after 2nd Collapse!!!

Effect of Giant Planets in PP Disks

In Laminar Disk: **Shepherding** of Dust Grains → Formation of Planetesimals by GI **Proceed to Core Accretion Scenario** in Region Outside Giant Planet

In Turbulent Disk:

→ Formation by Grain Coagulation? c.f. Johansen et al. (2007) Nature

Shepherding of Dust Grains

Shepherding of Dust Grains

Evolution of Dust Distribution with Various Sizes $(3M_{\rm E}, \eta = 0)$

Dust grains outside of "planet" do not fall onto the central star!

Muto & SI (2009) ApJ **695**, 1132

A Possible Path Toward Gravitational Instability to Form Planetesimals

Michikoshi & SI (2006) ApJ **641**, 1131

GI

Growth of Boulders to Planetesimals in MHD Turbulence

"Hybrid Scenario"

Scenario 1: Giant planets fall onto the central star. **→ Remnant Planetesimals may proceed to** (classical) core accretion scenario.

Scenario 2: Giant planets survive gas dispersal.

→ Giant Planets (no core) & Rocky Planets

NB: This can be a formation scenario even for our solar system, if *M***core** of Jupiter is very small.

Dispersal of Protoplanetary Disks?

- Accretion by MRI
- Photoevaporation: good for outer regions

something missing?

Many Observations of Inner Holes in PPDs

Powerful Quasi-Steady Disk Wind

Powerful MHD Wind from Disk just like Solar Wind Suzuki & SI (2009) ApJ **691**, L49 cf. Turner et al. (priv.comm.)

Powerful Quasi-Steady Disk Wind

Suzuki & SI (2009) ApJ **691**, L49

Inner Hole Creation and Dispersal

Dispersal Timescale \sim a few Myr for typical disk models in Ideal MHD Suzuki, Muto, & SI (2009) arXiv:0911.0311

Ionization Degree in PP Disks

neutral gas + ionized gas + dust grains ζ_{CR} = 10⁻¹⁷ s⁻¹ **cosmic ray** ionization \Rightarrow resistivity

Classical Models:

Sano et al. 2000, ApJ **543**, 486 Glassgold et al. 2000, PPIV Fromang et al. 2002, MN **329**, 18 Salmeron & Wardle 2003, MN **345**, 992

"Dead Zone" can be removed by self-sustained ionization! SI & Sano (2005) ApJ **628**, L155

Summary

Outflows from First Core & Jets from Protostar → ALMA Observations of Early Phase → Ang. Mom. & Mag. Flux Problem The First Core becomes Protoplanetary Disk!

Planetary Mass Companions in PP Disks Shepherding for Dust Grains

- **→ Formation of Planetesimals in Outer Region**
- Natural *Hybrid Scenario*