An Movie of Accretion/Ejection of Material in a High-Mass Young Stellar Object in Orion BN/KL at Radii Comparable to the Solar System

CIRIACO GODDI European Southern Observatory

Main collaborators

Lincoln Greenhill

Harvard-Smithsonian Center for Astrophysics

Liz Humphreys

- European Southern Observatory
 - Lynn Matthews
- MIT Haystack Observatory
 - **Claire Chandler**

National Radio Astronomy Observatory

High-Mass Star Formation: An Unsolved Problem

Addressing open questions: How do stars of $\sim 10 M_{\odot}$ form?

- Mass Accretion Process (Disk-mediated or competitive accr.? Coalescence?)
- Acceleration and Collimation of (proto-)Stellar Outflows?
- Sizes/Structures of Disks? Role of Magnetic Fields?
- Physical Properties of the Disk/Outflow interface?
- Multiplicity and distribution of massive YSOs within protoclusters

Why is high-mass star formation poorly understood?

Good examples of accreting massive YSOs are rare.

- Declining IMF and Rapid evolution => Distance (> 500 pc)
- Formation in clusters => Confusion/crowding
- High extinction => radio and mm-wavelengths
- Thermal tracers generally unable to probe inside 10-1000 AU from a massive YSO Talk Objective

Dynamics and physical conditions of circumstellar gas at radii 20-1000 AU from the high mass YSO Radio "Source I" in Orion BN/KL

The KaLYPSO Project

A documentary of massive star formation: Probing the dynamical evolution of Orion Source I on 10-1000 AU scales using interferometric observations of molecular masers

Observational Dataset

Transition	Instrument	Observations	Resolution
²⁸ SiO (v=1,2 J=1-0)	VLBA	40 epochs over 2001-03	0.1 AU
²⁸ SiO (v=0 J=1-0)	VLA	5 epochs in 10 yrs	25-100 AU
^{29/30} SiO (v=0 J=1-0)	VLA	2 epochs sep. by 9 yrs	100 AU
$H_2O(6_{16}-5_{23})$	VLA	3 epochs in 25 yrs	25 AU
7 mm continuum	VLA	3 epochs in 8 yrs	25 AU

<u>A multithreaded observational and modelling study of radio Source I:</u>

- I. Mapping of the time-varying distribution of \sim 1000 SiO maser spots at radii 10-100 AU (v=1,2) and 100-1000 AU (v=0) from source I
- II. A movie documenting the 3-D evolution of a disk/outflow "connection" within 100 AU from a massive protostar over 30% of the outflow crossing time
- III. 3-D dynamics of the circumstellar gas via measurements of proper motions of individual SiO v=0,1,2 maser spots
- IV. Geometric, dynamical, and radiative transfer models of the molecular masing gas
- V. Dynamical Scenarios for BN/KL: proper motions of the radio continuum sources

Radio "Source I" drives a "Low-Velocity" NE-SW outflow VLA maps of SiO V=0 J=1-0

Outflow properties inferred from maser proper motions:

- > Characteristic speed ~ 20 km/s
- ➢ Size < 2000 AU</p>
- ≻Dynamical crossing time <500 years
- Mass-loss rate $\sim 5 \times 10^{-6} \text{ M}_{\odot}/\text{yr}$

Greenhill, Goddi, et al., in prep.

Cumulative VLBA Moment 0 images of SiO (v=1,2) masers over 2 years

Resolving an outflow launch/collimation region from a compact disk in a high-mass YSO => evidence of disk-mediated accretion

Region A: R<100 AU</p>

Material is driven into a bipolar rotating funnel-like outflow from an edge-on disk

<u>Region B: 100<R<1000 AU</u>

Material is outflowing with a characteristic speed of 18 km/s along a NE-SW axis

Summary

- Bipolar, wide-angle outflow along a NE-SW axis at radii 100-1000 AU

 T_{dyn} ~ 300 yr for R = 1000 AU; dM_{out}/dt ~5×10⁻⁶ M_☉/yr
- Organized accretion/outflow structure inside ~100 AU
 - Bipolar, funnel-like wind in rotation ($T_{dyn} \sim 20$ yr for R = 0-70 AU)
 - Rotating and expanding disk ($T_{rot} \sim 30$ yr for R ~ 40 AU)

⇒ <u>Good example of disk-mediated accretion in massive YSOs</u>

- Source I is the best massive YSO known for testing how inflowing material is collimated to form an outflow
 - Photoionized wind? (e.g., Hollenbach et al.1995))
 - Equatorial line-driven wind? (e.g., Drew et al. 1998)
 - Equatorial wind driven by dust-mediated radiation pressure? (Elitzur 1982)
 - MHD disk wind? (e.g., Pudritz et al. 2007)

The Mass of Source I

The masing gas is not in purely Keplerian rotation, e.g. radiative and/or magnetic forces act against gravity (outward motions)

=> Only a lower limit to the mass can be estimated :

- 1. Keplerian rotation (bridge): R=35 AU, V_{3D} =14 km/s | V_{bridge} |² ~ 2GM_{*}/R => M_{*}>7 M_☉
- 2. Wind at the escape velocity (arms): R=25 AU, V_{3D} =16 km/s | V_{arm} |² ~ 2GM_{*}/R => M_{*}>7 M_☉
- 3. 7mm continuum luminosity (<u>HII region</u>): $L_* \sim 10^4 L_{\odot}$ => $M_* \sim 10 M_{\odot}$

Most probably Source I has a mass in the range 7-10 M_o

Candidate physical mechanisms driving the disk-wind

- Disk Photoionization (Hollenbach et al.1994)
 For M_{*}~8 M_☉, an *ionized* wind is set *beyond* the radius of the masers
- Line-Driven winds (Drew et al. 1998):

 $v_{w} \ge 400 \text{ km/s}, \rho_{w} << 10^{-14} \text{ g cm}^{-3} \text{ inconsistent with } v_{mas} <30 \text{ km/s}, \rho_{mas} >10^{-14} \text{ g cm}^{-3}$

• **Dust-mediated radiation pressure** (Elitzur 1982):

Dust and gas are mixed at R<100 AU: $L_{mod}=10^5 L_{\odot}$, $\dot{M}_{mod}=10^{-3} M_{\odot} \text{ yr}^{-1}$ Inconsistent with: $L_{obs} \leq 10^4 L_{\odot}$, $\dot{M}_{obs}=10^{-5} M_{\odot} \text{ yr}^{-1}$, $T_{gas}\sim 2000 \text{ K}$

• <u>MHD disk-winds</u> (Konigl & Pudritz 2000):

Maser features are detected along curved and helical filaments => Magnetic fields may play a role in launching and shaping the wind

Radiative transfer analysis of SiO maser emission

From a (constrained) LVG model with both radiative and collisional pumping

Species	n _{H2} (cm ⁻³)	T (K)	R (AU)	
²⁸ SiO v=0	< 10 ⁷	<1200	>100	
²⁸ SiO v=1	10 ⁸ - 10 ¹⁰	> 1500	<100	
²⁸ SiO v=2	10 ⁹ - 10 ¹¹	> 2000	<100	Doel et al 199
²⁹ SiO/ ³⁰ SiO v=0	10 ⁸ - 10 ¹¹	> 1500	<100	Goddi et al. 20

5

09

Different maser species/transitions trace different portions of the molecular gas around Source I

Effects of maser saturation and line overlap will be included in a future paper (Humphreys et al. In prep.)

Dynamical interaction in BN/KL: Proper Motions of Source I and BN (λ7mm cont. VLA)

500 years ago BN and I might have been as close as 50-100 AU I. The large motions of BN and I are the results of a triple-system decay 500 yrs ago II. An entire protocluster decayed ejecting the radio and IR sources in BN/KL

Goddi et al. in prep.; see also Rodriguez et al. 2005 and Gomez et al. 2008

Morphological evolution of the 7mm

Morphological evolution of individual maser features over 2 yrs

