### The Time History of Planet Formation: Observation Confronts Theory



## Thayne Currie (CfA/NASA-Goddard)

# Issues to Address in this Talk



#### 1a. Protoplanetary Disk Evolution



Warm primordial (protoplanetary) disk material gone by ~5 Myr for most stars (Hernandez et al. 2007; Currie et al. 2010 Currie et al. 2010 Currie et al. 2010 OF Compare frequency of disks that

are

1)

Signatures of warm gas gone by 2.5 Myr for A stars; 5 Myr for solar/subsolar mass stars

ral al, 2

nal,

## 1b. Protoplanetary Disk Evolution



Timescale for gas giant planet formation: MS A stars: 2.5 Myr or less; Solar/subsolar-mass stars: 5 Myr or less

Less time for A stars, yet planets around A stars are frequent (e.g. Johnson et al. 2007)  $\rightarrow$  formation must be very efficient

1c. Gas Giant Planet Formation



# 2a. The Lifetimes and Morphologies of Transition



Transition disks = disk with inner regions depleted of dust (and gas?) Based on Taurus data, transition timescale is ~

Another path: disks that are depleted more "homologously"

## **2b. Relative Fraction of Transitional Disks at 1 and 5**





For Taurus, about 5—15% of disks are transitional → very short transition timescale (0.1 Myr)?

 $K_{s} - [24]$ 

<u>NO</u> : In NGC 2362, 1) two types of transitional disks (many are 'homologously depleted': have lost substantial dust mass), 2) > 50% of disks are transitional

Currie & Lada et al. 2009

#### Why 'Homologously Depleted' Disks are bona fide transitional disks, not just flat Taurus-like (primordial) disks (part 2)



Mdisk (submm) < 1 M\_jupiter: <10x less massive than some transition disks in Taurus (e.g. Najita et al. 2007) disks in Taurus Best-fit Mdisk from Robitaille models ~ 0.1 M\_jupiter (Currie et al. 2010b)

# 2c. Relative Fraction of Transition Disks Increases with Age



Frequency vs. time not consistent with rapid (0.01-0.1 Myr) dispersal timescale: ~1 Myr more **PROTO DIS**netar y disks "die a slow death"

Not consistent with "UV Switch" Model (rapid photoevaporation; Clarke et al. 2001)

Not consistent with gap-opening planets with high disk viscosity? But photoevaporation in general not "ruled out": (e.g. Gorti et al. 2009; Alexander & Armitage 2009, etc.) and \*does\* occur (e.g. Pascucci and Sterzik 2009)





#### Evolution of 24 micron debris emission (Main Sequence A Stars)



Peak in debris emission at ~10-15 Myr Due to growth of ~1000 km objects & viscous stirring? (Kenyon and Bromley 2008; 2010)

# Summary

Gas giant planet formation: < 2.5 Myr for A stars; < 5 Myr for solar-type stars. Possible if accreted planetesimals are small

Transition Disks: two morphologies, t(transition) ~ 1 Myr: requires slow-acting mechanism

Debris disk studies  $\rightarrow$  At least many planetesimals must be small (1m - 1km)

Evolution of debris emission may trace stages in planet formation

# Data

#### <u>Cluster Age (Myr) # of Stars Work</u>

| NGC 1333                                         | 1    | 137   | Gutermuth et al. 2008                  |
|--------------------------------------------------|------|-------|----------------------------------------|
| Taurus<br>2009                                   | ~12  | 100   | -300 Luhman et al. 2009, Furlan et al. |
| IC 348                                           | 2.5  | 307   | Currie & Kenyon 2009; Lada et al.      |
| 2000                                             |      |       | <b>T</b>                               |
| NGC 2264                                         | .3   | 4/1   | l eixeira et al. 2010                  |
| Sigma Ori                                        | 3    | 336   | Hernandez et al. 2007                  |
| Upper Scorpi                                     | us 5 | 220   | Carpenter et al. 2006, 2009            |
| NGC 2362                                         | 5    | 3371, | 500 Currie & Lada et al. 2009          |
| η Cha                                            | 6—8  | 14    | Sicilia-Aguilar et al. 2009            |
| 25 Ori                                           | 8.5  | ~225  | <u>Hernandez et</u> al. 2006, 2007     |
|                                                  |      |       |                                        |
| h & χ Persei 14 <b>14,160</b> Currie et al. 2010 |      |       |                                        |
| Global Analysis 1-50 20,000 Currie et al. 2010   |      |       |                                        |