Disk-star interaction: stellar magnetosphere and accretion

(and angular momentum evolution, disk lifetimes, and planet formation)

Jérôme Bouvier

I AOG

LADORATOIRE d'ASTROPHYSIQUE dE GRENOBLE

Outline

> Magnetic fields in young stars

Magnetospheric star-disk interaction

Angular momentum evolution, disc lifetimes and planet formation

Magnetic fields in young stars

Zeeman-Doppler imaging from spectropolarimetric measurements

Unpolarized line profile : brightness map (Doppler imaging) Circularly polarized line profile : **magnetic map : intensity + topology** (Zeeman-Doppler imaging)

Donati et al. 1997

ZDI : BP Tau and V2129 Oph

• ZDI analysis of 2 accreting T Tauri stars

BP Tau (1.5 Myr) M=0.7M_o; M_{acc}~3.10⁻⁸M_o/yr

LSD profiles, BP Tau, ESPaDOnS, 2006 Feb 11

V2129 Oph (2 Myr) M=1.35M_o; M_{acc}~10⁻⁸M_o/yr

Donati et al. 2007, 2008

Surface magnetic map of BP Tau

Magnetospheric accretion on the cTTS BP Tau 1247

Magnetic structure of CTTS

BP Tau (Donati et al. 2008; Gregory et al. 2008) V2129 Oph (Donati et al. 2007; Jardine et al. 2008) CTTS magnetic fields are strong, complex, and time variable !

- **BP Tau:** 1.2 kG dipole + 1.6 kG octupole
- V2129 Oph: 0.35 kG dipole + 1.2 kG octupole
- CV Cha, CR Cha: ~ 400-600G (Hussain et al. 2009)
- V410 Tau: ~ 500G (Skelly et al. 2009)

Magnetic field origin

The topology of the magnetic field varies across the convective / radiative boundary, with more axisymmetric fields in completely convective stars.

The magnetic field is stronger in fully convective stars

Donati et al. 2008

CTTS magnetic field structure

Magnetospheric star-disc interaction in young stars

Star-disk magnetic coupling

2D MHD simulation of disk accretion onto an aligned dipole

Zanni et al. 2009

$$M_{star} = 0.8M_o$$
; $R_{star} = 2R_o$
 $B_{dipole} = 800$ G; $dM_{acc}/dt = 10^{-8} M_o/yr$

Occultations by the inner disk warp (AA Tau; P = 8.2 days)

Line profile variability from inclined magnetospheres

Kurosawa, Romanova, Harries 2008

3D MHD simulations of accretion onto an inclined dipole 3D radiative transfer of rotationally-induced line variability (e.g. Paβ)

(.avi)

Inclined magnetospheres : AA Tau

COROT light curves : NGC 2264

Alencar et al. 2009

AA Tau-like COROT light curves

Rapid (~rotation cycle) and significant variations of the occulting material.

Corot light curves vs. disc evolution

Alencar et al. 2009

97 CTTS with IRAC [3.6-8]µm color

The Corot light curve morphology reflects the evolution of the disk

25% of CTTS exhibit AA Tau-like lightcurves

Assuming random inclinations, this fraction yields : h/R ~ 0.3 at the inner disk edge

(flared α-disks have h/R~0.1)

Inner disk warps

induced by the interaction with an inclined magnetosphere

Halting the planet migration ?

"Hot Jupiters" (or Saturns...)?

Star-planet interacting magnetospheres

MHD simulations of the star-planet magnetospheres interaction

Cohen et al. 2009

Main sequence system:

B(star) = 5 GB(planet) = 2 G

Much stronger fields to be expected at 1-10 Myr (~ 0.1-1.0 kG) Angular momentum evolution, disc lifetimes and planet formation timescale

Angular momentum regulation

The magnetic star-disc interaction regulates the angular momentum of the star.

e.g., **accretion-powered magnetic winds** carry away angular momentum, thus braking the star

Matt & Pudritz 2005

Cieza & Baliber 2007

Observational evidence for **« Disc locking » :** as long as the star accretes from its disc, it evolves at a constant angular velocity

Angular momentum evolution

Surface rotation is dictated by the initial velocity + disk lifetime + magnetic winds

Angular momentum evolution models vs. observations

Differential rotation \rightarrow internal mixing \rightarrow **enhanced Li depletion**

Lithium in exoplanet hosts : a window to disc lifetimes

Solar-type stars with massive planets have lower Li abundances than solar-type stars without massive planets

Israelian et al. 2009, Gonzalez 2008

Enhanced Li depletion in exoplanet hosts

 \rightarrow links back to the initial rotational evolution of exoplanet hosts and their disc lifetimes

Angular momentum evolution and planet formation

Conclusions

- Magnetic star-disc interaction (magnetospheric accretion) is a common occurrence in young low-mass stars
- The accretion of the inner disc onto an inclined magnetosphere results in a non-axisymmetric inner disc warp with (h_{max}/r) ~ 0.3. The warped inner disc edge has to be taken into account when modelling SEDs, images, visibilities, variability, etc.
- The angular momentum evolution of young accreting stars and the lithium depletion history of exoplanet host stars together suggest that a minimum disc lifetime of ~5 Myr is required to form giant planets in circumstellar discs