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domain

D
is

k
Star

Energetic domain

Rayleigh!Jeans

Wien domain

key tool: sub-mm continuum emission

• bright emission from dust

• unique tracer of midplane

• high spatial resolution

• optically thin emission

(for now...)

Dullemond et al. 2007

• no stellar contamination

Beckwith et al. 1990
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Andrews & Williams 2007aAndrews et al. 2009
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modeling disk structure
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&+

density
parametric density structure

temperature

compare with data
2-D Monte Carlo radiative transfer

Dullemond & Dominik 2004

synthetic visibilities+SED
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deproj baseline 
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log νFν

contours = datapoints = data blue curve = star

Andrews et al. 2009

Sean AndrewsNovember 4, 2009 - From Circumstellar Disks to Planetary Systems | Garching, Germany



modeling results

6/10

contours = datapoints = data blue curve = star

Andrews et al. 2009

Sean AndrewsNovember 4, 2009 - From Circumstellar Disks to Planetary Systems | Garching, Germany



modeling results

6/10

contours = datapoints = data blue curve = star

Andrews et al. 2009

red curve = modelmodel

Sean AndrewsNovember 4, 2009 - From Circumstellar Disks to Planetary Systems | Garching, Germany



modeling results
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contours = datapoints = data blue curve = star

Andrews et al. 2009

red curve = modelmodelresiduals
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γ ~ 0.4-1.0; median γ = 0.9

surface densities:

Andrews et al. 2009
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γ ~ 0.4-1.0; median γ = 0.9

surface densities:

structure set by viscous torques

not large-scale grav. instabilities

viscous evolution:

link with M to quantify viscosity

α ~ 0.0005-0.08; ~MRI values

.

densities comparable to MMSN

in the R~10-40 AU range

plenty of mass at large radii

grav. stable at all locations

planet formation:

Andrews et al. 2009
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Hughes, Andrews et al. 2009

missing infrared excess

missing warm dust

?

R~20 AU orbit

direct submm imaging:
yes!  

optical depth “cavities”

- photoevaporation

- particle growth

- tidal interactions
• star or BD
• giant planet

how are they made?

Sean AndrewsNovember 4, 2009 - From Circumstellar Disks to Planetary Systems | Garching, Germany



9/10

implications for planet formation

compare to MMSN/normal disks

cavity radii Rcav ~ 20-40 AU

Andrews et al. 2009; Brown et al. 2007, 2009
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implications for planet formation

compare to MMSN/normal disks

cavity radii Rcav ~ 20-40 AU

but why these disks?

tidal interactions with unseen
companion star/BD/planets?

a hint: the stars seem older
Andrews et al. 2009; Brown et al. 2007, 2009
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summary

new 870 micron SMA surveys of nearby disks at 0.3” resolution

simultaneous RT modeling of SEDs and SMA visibilities
used to determine 2-D (parametric) density structures

• radial density gradient ~ 1/R with exponential edge
• densities consistent with viscous accretion disk models

increasing number of resolved transition disk cavities

NEXT: bandwidth-doublers installed on SMA (2 GHz --> 4 GHz)
• double Oph sample, down to median disk mass
• new survey in Lupus
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