Planetary population synthesis

Yann ALIBERT

C. Mordasini, L. Fouchet, W. Benz

 $\boldsymbol{u}^{\scriptscriptstyle b}$

^b UNIVERSITÄT BERN

I) Planet formation models

Planet growth

Disk structure and evolution

Migration

2) First generation population synthesis models Initial conditions

Reproducing *planet* observations

3) Second generation population synthesis models Using *disk* observations

Planet formation

Planet formation

This talk

The core accretion paradigm

Extended models

1) "standard" core-accretion model predict formation in few Myr

- 2) disk evolution
- 3) type I and type II migration

The model is kept as simple as possible: No tricks, everything is "standard" but considered together...

Models overview

Planet's solids accretion rate

- Mass loss due to:
 - radiation from ambiant gas and shock wave:

$$\begin{cases} \frac{dm}{dt} = -\frac{F_{\text{input}}\pi r^2(t)}{Q_{\text{abl}}}\\ F_{\text{input}} = \frac{1}{2}C_H\rho_g v^3\\ C_H = 10^{-5} \text{ to } \frac{1}{2}C_D \end{cases}$$

mechanical effects (Zahnle 1992, MacLow 1996, Korykansky 2002)

Planet's solids accretion rate

Planet's internal structure

Internal structure equations

1)
$$\frac{dr^3}{dm} = \frac{3}{4\pi\rho}$$
 mass conservation

2) $\frac{dP}{dm} = -\frac{G(m + M_{core})}{4\pi r^4}$ hydrostatic equilibrium

3)
$$\frac{dT}{dP} = \nabla_{ad}$$
 or ∇_{rad} energy transfer

 $L = L_{\text{planetesimals}}$

Envelope mass derives from the condition $R_{\text{planet}} = R_{\text{Hills}}$

Gas accretion rate limited by disk properties

Planet's internal structure

Friday, December 4, 2009

Models overview

Disk model: gas

Photoevaporation model from Veras and Armitage 2004

Disk model: gas

Disk model: gas

Disk model: planetesimals

Models overview

Migration - type I

Migration - type I

Friday, December 4, 2009

Migration - type I

Tanaka, Takeuchi & Ward 2002

Extrasolar planets

Huge diversity resulting probably from different ICs:

Protoplanetary disk
 Metallicity
 Environement

To explain the observations, need to take into account

I) the ICs, with the correct probability laws2) the observational biases

 \Rightarrow Monte-Carlo approach

Initial conditions

Beckwith & Sargent

Haisch et al. 2001

Evolutionary tracks: the full population

Theoretical population

Bias (radial velocities)

M sin(i) vs a

all

10 m/s

Influence of disk

an "observed" disk...

- \Rightarrow Disk lifetime ?
- \Rightarrow Disk mass ?
- \Rightarrow Heating sources ?
- \Rightarrow SED and evolution ?

Consequences on planetary population

2.0 Msun

 $T_{
m disk} \propto M_{
m star}^{-1/2}$ for $M > 1.5 M_{\odot}$

Kennedy & Kenyon (2009)

Alibert, Mordasini, Benz, in prep

Disk mass ?

assume $M_{\rm disk} \propto M_{\rm star}^{\alpha_D}$ α_D adjusted to reproduce the $\dot{M_{\rm disk}}$ versus $M_{\rm star}$ relation

!! see also dependance of the active zone with Mstar !!

Disk mass ?

0.1

a [AU]

1 a [AU]

2.0 M_{sun}

10⁴ 10⁴ M [Earth mass] 0001 00 1000 M [Earth mass] H $M_{disk} \propto M_{star}^0$ 10 10 0.1 a [AU] 10⁴ 10⁴ 1000 1000 M [Earth mass] 0 M [Earth mass] 0 $M_{disk} \propto M_{star}^2$ 10 10 0.1 0.1 a [AU] 0.5 M_{sun} Alibert, Mordasini, Benz, in prep

viscosity

Heating sources

- I) viscous heating
 - $\Gamma_{\rm visc} = \frac{9}{4} \rho \nu \Omega^2$

2) irradiation

 T^{\star}

irradiation flux added to the surface flux (due to mass accretion)

Fouchet, Alibert, Mordasini, Benz, in prep

fI=0.1

SED and evolution ?

No inclination, gas and dust in equilibrium, etc...

Sicilia-Aguilar et al. 2006

Housspice=0005AU->>3600AU Sigma(@5AU) = $900g/cm^2$

homologous depletion of disks (Thayne's talk)

SED and evolution ?

Many thanks to Luisa Rebull and collaborators for providing the unpublished Spitzer photometry

•first generation extended models allow quantitative predictions and can:

- reproduce the diversity of the exoplanets
- fit RV data for G stars, with high KS values
- disk structure and evolution is a key ingredient for these models

•second generation of models will focus on comparison with disks:

- disk properties for different stellar type
- disk evolution / SED

